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MDAnalysis version: 2.8.0-dev0

Last updated: Dec 29, 2023

MDAnalysis (www.mdanalysis.org) is a Python toolkit to analyse molecular dynamics files and trajectories in many
popular formats. MDAnalysis can write most of these formats, too, together with atom selections for use in visualisation
tools or other analysis programs. It provides a fast framework for complex analysis tasks, as well as flexible tooling to
construct your own analyses.
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2 GETTING STARTED



CHAPTER

ONE

WHY MDANALYSIS?

The typical use case for MDAnalysis is to manipulate or analyse molecular dynamics trajectories. The library focuses
on two key features:

• Memory efficiency. The size of trajectory data can quickly overwhelm the memory resources of your computer.
MDAnalysis typically accesses your trajectory by only loading data for one frame at a time. This allows you to
work with trajectories of any length without difficulty.

• Flexibility. MDAnalysis is constructed to be easily extensible. If an analysis method is not already available in
MDAnalysis, you can write your own custom trajectory analysis with the building blocks provided. If you need
to read in a custom file format, you can construct your own Reader or Parser that will automatically get picked
up when MDAnalysis is constructing a Universe from files. You can create and add your own labels for atoms,
residues, or segments (called topology attributes) and relationships between atoms (e.g. bonds, angles).
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CHAPTER

TWO

PARTICIPATING

MDAnalysis welcomes all contributions from its users. There are many ways you can help improve MDAnalysis,
from asking questions on the `mdnalysis-discussion`_ mailing list, to raising issues on the Issue Tracker, to adding
your own code. Please see Contributing to MDAnalysis for an introduction and guide to contributing to the code and
documentation.

Important: Ground rules and expectations
The MDAnalysis community subscribes to a Code of Conduct. By participating in this project and community, you
agree to abide by its terms. Please read it.

In general, we expect you to be kind and thoughtful in your conversations around this project. We all come from
different backgrounds and projects, which means we will not always agree. Try to listen and understand why others
hold their viewpoints in discussions. Rather than blaming each other, focus on helping to resolve issues and learning
from mistakes.

2.1 Communications

Questions and discussions about MDAnalysis take place on GitHub Discussions and this repository’s Issue Tracker.
Anybody is welcome to join these conversations. Please ask questions about the usage of MDAnalysis on the
`mdnalysis-discussion`_ mailing list, and report problems on the Issue Tracker.

Wherever possible, do not take these conversations to private channels, including contacting the maintainers directly.
Keeping communication public means everybody can benefit and learn from the conversation.

2.1.1 Installation

The latest versions of MDAnalysis can be installed using conda or pip. Currently, the conda releases only support
serial calculations. If you plan to use the parallel OpenMP algorithms, you need to install MDAnalysis with pip and
have a working OpenMP installation.

MDAnalysis has a separate test suite MDAnalysisTests that is required to run the test cases and examples. The test files
change less frequently, take up around 90 MB of space, and are not needed for daily use of MDAnalysis. However, they
are often used in examples, including many in this User Guide. If you are not interested in developing MDAnalysis or
using the example files, you most likely don’t need the tests. If you want to run examples in the User Guide, install the
tests. The tests are distributed separately from the main package.

Note: If you are installing on Windows, you must have Microsoft Visual C++ 14.0 installed. If your installation fails
with the error message:
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error: Microsoft Visual C++ 14.0 is required. Get it with “Build Tools for Visual Studio”: https:
//visualstudio.microsoft.com/downloads/

Try installing Build Tools for Visual Studio from https://visualstudio.microsoft.com/downloads/ (scroll down to the
Tools for Visual Studio section).

If you encounter any issues following these instructions, please ask for help on GitHub Discussions (Installation).

conda

If you use conda to manage your Python environment, we highly recommend creating a new environment for MD-
Analysis. This will ensure that you have a clean installation of MDAnalysis and its dependencies, and will not interfere
with other packages you may have installed. We further recommend that you install and use mamba, a faster drop-in
replacement for conda.

conda create --name mdanalysis
conda activate mdanalysis
conda install -c conda-forge mamba

To install the latest stable version of MDAnalysis via conda, use the following command. This installs all dependencies
needed for full analysis functionality (excluding external programs such as HOLE):

mamba install -c conda-forge mdanalysis

To upgrade:

mamba update mdanalysis

To install the tests:

mamba install -c conda-forge MDAnalysisTests

If you intend to use MDAnalysis in JupyterLab, you will have to install an extra package for the progress bar in analysis
classes:

conda install -c conda-forge nodejs
jupyter labextension install @jupyter-widgets/jupyterlab-manager

pip

The following command will install or upgrade the latest stable version of MDAnalysis via pip, with core dependencies.
This means that some packages required by specific analysis modules will not be installed.

pip install --upgrade MDAnalysis

If you need to install a fully-featured MDAnalysis, add the analysis tag. As with conda, this will not install external
programs such as HOLE.

pip install --upgrade MDAnalysis[analysis]

To install/upgrade tests:
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pip install --upgrade MDAnalysisTests

If you intend to use MDAnalysis in JupyterLab, you will have to install an extra package for the progress bar in analysis
classes:

pip install nodejs
jupyter labextension install @jupyter-widgets/jupyterlab-manager

Development versions

To install development versions of MDAnalysis, you can compile it from source. In order to install from source, you will
need numpy and cython. See Creating a development environment for instructions on how to create a full development
environment.

git clone https://github.com/MDAnalysis/mdanalysis
cd mdanalysis
# assuming you have already installed required dependencies
pip install -e package/

And to install the test suite:

pip install -e testsuite/

Testing

The tests rely on the pytest and numpy packages, which must also be installed. Run tests with:

pytest --disable-pytest-warnings --pyargs MDAnalysisTests

All tests should pass (i.e. no FAIL, ERROR); SKIPPED or XFAIL are ok. If anything fails or gives an error, ask on
GitHub Discussions or raise an issue.

Testing MDAnalysis can take a while, as there are quite a few tests. The plugin pytest-xdist can be used to run tests in
parallel.

pip install pytest-xdist
pytest --disable-pytest-warnings --pyargs MDAnalysisTests --numprocesses 4

Custom compiler flags and optimised installations

You can pass any additional compiler flags for the C/C++ compiler using the extra_cflags variable in setup.cfg.
This allows you to add any additional compiler options required for your architecture.

For example, extra_cflags can be used to tune your MDAnalysis installation for your current architecture using
the -march, -mtune, -mcpu and related compiler flags. Which particular compiler flags to use depends on your CPU
architecture. An example for an x86_64 machine would be to change the line in setup.cfg as follows:

- #extra_cflags =
+ extra_cflags = -march=native -mtune=native
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Use of these flags can give a significant performance boost where the compiler can effectively autovectorise.

Be sure to use the recommended flags for your target architecture. For example, ARM platforms recommend using
-mcpu instead of -mcpu, while PowerPC platforms prefer both -mcpu and -mtune.

Full dicussion of the these flags is available elsewhere (such as here in this wiki or in this ARM blog post) and a list of
supported options should be provided by your compiler. The list for GCC is provided here.

Warning: Use of these compiler options is considered advanced and may reduce the binary compatibility of
MDAnalysis significantly, especially if using -march, making it usable only on a matching CPU architecture to
the one it is compiled on. We strongly recommend that you run the test suite on your intended platform before
proceeding with analysis.

In cases where you might encounter multiple CPU architectures (e.g. on a supercomputer where the login node and
compute node have different architectures), you should avoid changing these options unless you are experienced with
compiling software in these situations.

Additional datasets

MDAnalysisData is an additional package with datasets that can be used in example tutorials. You can install it with
conda or pip:

# conda
conda install -c conda-forge mdanalysisdata
# pip
pip install --upgrade MDAnalysisData

This installation does not download all the datasets; instead, the datasets are cached when they are first downloaded
using a Python command.

2.1.2 Quick start guide

MDAnalysis version: 0.18.0

Last updated: December 2022 with MDAnalysis 2.4.0

This guide is designed as a basic introduction to MDAnalysis to get you up and running. You can see more complex
tasks in our Example notebooks. This page outlines how to:

• load a molecular dynamics structure or trajectory

• work with AtomGroups, a central data structure in MDAnalysis

• work with a trajectory

• write out coordinates

• use the analysis algorithms in MDAnalysis

• correct and automated citation of MDAnalysis and algorithms

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, GRO, XTC

import warnings
# suppress some MDAnalysis warnings about PSF files

(continues on next page)
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(continued from previous page)

warnings.filterwarnings('ignore')

from matplotlib import pyplot as plt

print(mda.Universe(PSF, DCD))
print("Using MDAnalysis version", mda.__version__)

%matplotlib inline

<Universe with 3341 atoms>
Using MDAnalysis version 2.6.0-dev0

This tutorial assumes that you already have MDAnalysis installed. Running the cell above should give something
similar to:

<Universe with 3341 atoms>
2.6.0

If you get an error message, you need to install MDAnalysis. If your version is under 0.18.0, you need to upgrade
MDAnalysis. Instructions for both are here. After installing, restart this notebook.

Overview

MDAnalysis is a Python package that provides tools to access and analyse data in molecular dynamics trajectories.
Several key data structures form the backbone of MDAnalysis.

• A molecular system consists of particles. A particle is represented as an Atom object, even if it is a coarse-grained
bead.

• Atoms are grouped into AtomGroups. The AtomGroup is probably the most important class in MDAnalysis, as
almost everything can be accessed through it. See Working with atoms below.

• A Universe contains all the particles in a molecular system in an AtomGroup accessible at the .atoms attribute,
and combines it with a trajectory at .trajectory.

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed.
The trajectory attribute of a Universe is usually a file reader. Think of the trajectory as a function 𝑋(𝑡) of the
frame index 𝑡 that only makes the data from this specific frame available. This structure is important because it allows
MDAnalysis to work with trajectory files too large to fit into the computer’s memory.

MDAnalysis stores trajectories using its internal units: Å (ångström) for length and ps (picosecond) for time, regard-
less of the original MD data format.

Loading a structure or trajectory

Working with MDAnalysis typically starts with loading data into a Universe, the central data structure in MDAnalysis.
The user guide has a complete explanation of ways to create and manipulate a Universe.

The first arguments for creating a Universe are topology and trajectory files.

• A topology file is always required for loading data into a Universe. A topology file lists atoms, residues, and
their connectivity. MDAnalysis accepts the PSF, PDB, CRD, and GRO formats.

• A topology file can then be followed by any number of trajectory files. A trajectory file contains a list of
coordinates in the order defined in the topology. If no trajectory files are given, then only a structure is loaded.
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If multiple trajectory files are given, the trajectories are concatenated in the given order. MDAnalysis accepts
single frames (e.g. PDB, CRD, GRO) and timeseries data (e.g. DCD, XTC, TRR, XYZ).

[2]: psf = mda.Universe(PSF)
print(psf)
print(hasattr(psf, 'trajectory'))

<Universe with 3341 atoms>
False

As PSF files don’t contain any coordinate information and no trajectory file has been loaded, the psf universe does not
contain a trajectory. If the topology file does contain coordinate information, a trajectory of 1 frame is created.

[3]: gro = mda.Universe(GRO)
print(gro)
print(len(gro.trajectory))

<Universe with 47681 atoms>
1

For the remainder of this guide we will work with the universe u, created below. This is a simulation where the enzyme
adenylate kinase samples a transition from a closed to an open conformation (Beckstein et al., 2009).

[4]: u = mda.Universe(PSF, DCD)
print(u)
print(len(u.trajectory))

<Universe with 3341 atoms>
98

Note
The MDAnalysis test suite is packaged with a bunch of test files and trajectories, which are named after their file format.
We are using these files throughout this guide for convenience. To analyse your own files, simply replace the PSF and
DCD above with paths to your own files. For example:

structure_only = mda.Universe("my_pdb_file.pdb")

Working with groups of atoms

Most analysis requires creating and working with an AtomGroup, a collection of Atoms. For convenience, you can also
work with chemically meaningful groups of Atoms such as a Residue or a Segment. These come with analogous
containers to AtomGroup: ResidueGroup and SegmentGroup. For instance, the .residues attribute of a Universe
returns a ResidueGroup.

[5]: print(u.residues)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>, <Residue ILE, 3>, ..., <Residue ILE,␣
→˓212>, <Residue LEU, 213>, <Residue GLY, 214>]>
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Selecting atoms

The easiest way to access the particles of your Universe is with the atoms attribute:

[6]: u.atoms

[6]: <AtomGroup with 3341 atoms>

This returns an AtomGroup, which can be thought of as a list of Atom objects. Most analysis involves working with
groups of atoms in AtomGroups. AtomGroups can easily be created by slicing another AtomGroup. For example, the
below slice returns the last five atoms.

[7]: last_five = u.atoms[-5:]
print(last_five)

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom␣
→˓3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3339: C of type␣
→˓32 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname␣
→˓GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214␣
→˓and segid 4AKE>]>

MDAnalysis supports fancy indexing: passing an array or list of indices to get a new AtomGroup with the atoms at
those indices in the old AtomGroup.

[8]: print(last_five[[0, 3, -1, 1, 3, 0]])

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom␣
→˓3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of␣
→˓type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of␣
→˓resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY,␣
→˓resid 214 and segid 4AKE>, <Atom 3337: HA1 of type 6 of resname GLY, resid 214 and␣
→˓segid 4AKE>]>

MDAnalysis has also implemented a powerful atom selection language that is similar to existing languages in VMD,
PyMol, and other packages. This is available with the .select_atoms() function of an AtomGroup or Universe
instance:

[9]: print(u.select_atoms('resname ASP or resname GLU'))

<AtomGroup [<Atom 318: N of type 54 of resname GLU, resid 22 and segid 4AKE>, <Atom 319:␣
→˓HN of type 1 of resname GLU, resid 22 and segid 4AKE>, <Atom 320: CA of type 22 of␣
→˓resname GLU, resid 22 and segid 4AKE>, ..., <Atom 3271: OE2 of type 72 of resname GLU,␣
→˓resid 210 and segid 4AKE>, <Atom 3272: C of type 20 of resname GLU, resid 210 and␣
→˓segid 4AKE>, <Atom 3273: O of type 70 of resname GLU, resid 210 and segid 4AKE>]>

Numerical ranges can be written as first-last or first:last where the range is inclusive. Note that in slicing,
the last index is not included.

[10]: print(u.select_atoms('resid 50-100').n_residues)
print(u.residues[50:100].n_residues)

51
50

Selections can also be combined with boolean operators, and allow wildcards.

For example, the command below selects the 𝐶𝛼 atoms of glutamic acid and histidine in the first 100 residues of the
protein. Glutamic acid is typically named “GLU”, but histidine can be named “HIS”, “HSD”, or “HSE” depending on
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its protonation state and the force field used.

[11]: u.select_atoms("(resname GLU or resname HS*) and name CA and (resid 1:100)")

[11]: <AtomGroup with 6 atoms>

Note
An AtomGroup created from a selection is sorted and duplicate elements are removed. This is not true for an AtomGroup
produced by slicing. Thus, slicing can be used when the order of atoms is crucial.

The user guide has a complete rundown of creating AtomGroups through indexing, selection language, and set methods.

Getting atom information from AtomGroups

An AtomGroup can tell you information about the atoms inside it with a number of convenient attributes.

[12]: print(u.atoms[:20].names)

['N' 'HT1' 'HT2' 'HT3' 'CA' 'HA' 'CB' 'HB1' 'HB2' 'CG' 'HG1' 'HG2' 'SD'
'CE' 'HE1' 'HE2' 'HE3' 'C' 'O' 'N']

[13]: print(u.atoms[50:70].masses)

[ 1.008 1.008 1.008 12.011 1.008 1.008 12.011 1.008 1.008 1.008
12.011 15.999 14.007 1.008 12.011 1.008 12.011 1.008 12.011 1.008]

It also knows which residues and segments the atoms belong to. The .residues and .segments return a
ResidueGroup and SegmentGroup, respectively.

[14]: print(u.atoms[:20].residues)
print(u.atoms[-20:].segments)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>]>
<SegmentGroup [<Segment 4AKE>]>

Note that there are no duplicates in the ResidueGroup and SegmentGroup above. To get residue attributes atom-wise,
you can access them directly through AtomGroup.

[15]: print(u.atoms[:20].resnames)

['MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET'
'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'ARG']

You can group atoms together by topology attributes.

For example, to group atoms with the same residue name and atom name together:

[16]: near_met = u.select_atoms('not resname MET and (around 2 resname MET)')
sorted(near_met.groupby(['resnames', 'names']))

[16]: [('ALA', 'C'),
('ALA', 'HN'),
('ARG', 'N'),
('ASN', 'O'),

(continues on next page)
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(continued from previous page)

('ASP', 'C'),
('ASP', 'N'),
('GLN', 'C'),
('GLU', 'N'),
('ILE', 'C'),
('LEU', 'N'),
('LYS', 'N'),
('THR', 'N')]

A complete list of topology attributes can be found in the user guide.

AtomGroup positions and methods

The .positions attribute is probably the most important information you can get from an AtomGroup: a numpy.
ndarray of coordinates, with the shape (n_atoms, 3).

[17]: ca = u.select_atoms('resid 1-5 and name CA')
print(ca.positions)
print(ca.positions.shape)

[[11.664622 8.393473 -8.983231 ]
[11.414839 5.4344215 -6.5134845 ]
[ 8.959755 5.612923 -3.6132305 ]
[ 8.290068 3.075991 -0.79665166]
[ 5.011126 3.7638984 1.130355 ]]
(5, 3)

A number of other quantities have been defined for an AtomGroup, including:

• .center_of_mass()

• .center_of_geometry()

• .total_mass()

• .total_charge()

• .radius_of_gyration()

• .bsphere() (the bounding sphere of the selection)

See the user guide for a complete list and description of AtomGroup methods.

[18]: print(ca.center_of_mass())

[ 9.06808195 5.25614133 -3.75524844]

Note
The .center_of_mass() function, like many of the analysis modules in MDAnalysis, relies on having accurate mass
properties available. Particle masses may not always be available or accurate!

Currently, MDAnalysis assigns masses to particles based on their element or ‘atom type’, which is guessed from the
particle name. If MDAnalysis guesses incorrectly (e.g. a calcium atom called CA is treated as a 𝐶𝛼), the mass of that
atom will be inaccurate. If MDAnalysis has no idea what the particle is (e.g. coarse-grained beads), it will raise a
warning, and give that particle a mass of 0.
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To be certain that MDAnalysis is using the correct masses, you can set them manually.

MDAnalysis can also create topology geometries such as bonds, angles, dihedral angles, and improper angles from an
AtomGroup. This AtomGroup has a special requirement: only the atoms involved in the geometry can be in the group.
For example, an AtomGroup used to create a bond can only have 2 atoms in it; an AtomGroup used to create a dihedral
or improper angle must have 4 atoms.

[19]: nhh = u.atoms[:3]
print(nhh.names)

['N' 'HT1' 'HT2']

After a topology object such as an angle is created, the value of the angle (in degrees) can be calculated based on the
positions of the atoms.

[20]: angle_nhh = nhh.angle
print(f"N-H-H angle: {angle_nhh.value():.2f}")

N-H-H angle: 37.99

Note that the order of the atoms matters for angles, dihedrals, and impropers. The value returned for an angle is the
angle between first and third atom, with the apex at the second. Fancy indexing is one way to get an ordered AtomGroup.

3
/

/
2------1

[21]: hnh = u.atoms[[1, 0, 2]]
print(hnh.names)

['HT1' 'N' 'HT2']

[22]: angle_hnh = hnh.angle
print(f"N-H-H angle: {angle_hnh.value():.2f}")

N-H-H angle: 106.20

Working with trajectories

The trajectory of a Universe contains the changing coordinate information. The number of frames in a trajectory is its
length:

[23]: print(len(u.trajectory))

98

The standard way to assess the information of each frame in a trajectory is to iterate over it. When the timestep changes,
the universe only contains information associated with that timestep.

[24]: for ts in u.trajectory[:20]:
time = u.trajectory.time
rgyr = u.atoms.radius_of_gyration()
print(f"Frame: {ts.frame:3d}, Time: {time:4.0f} ps, Rgyr: {rgyr:.4f} A")
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Frame: 0, Time: 1 ps, Rgyr: 16.6690 A
Frame: 1, Time: 2 ps, Rgyr: 16.6732 A
Frame: 2, Time: 3 ps, Rgyr: 16.7315 A
Frame: 3, Time: 4 ps, Rgyr: 16.7223 A
Frame: 4, Time: 5 ps, Rgyr: 16.7440 A
Frame: 5, Time: 6 ps, Rgyr: 16.7185 A
Frame: 6, Time: 7 ps, Rgyr: 16.7741 A
Frame: 7, Time: 8 ps, Rgyr: 16.7764 A
Frame: 8, Time: 9 ps, Rgyr: 16.7894 A
Frame: 9, Time: 10 ps, Rgyr: 16.8289 A
Frame: 10, Time: 11 ps, Rgyr: 16.8521 A
Frame: 11, Time: 12 ps, Rgyr: 16.8549 A
Frame: 12, Time: 13 ps, Rgyr: 16.8723 A
Frame: 13, Time: 14 ps, Rgyr: 16.9108 A
Frame: 14, Time: 15 ps, Rgyr: 16.9494 A
Frame: 15, Time: 16 ps, Rgyr: 16.9810 A
Frame: 16, Time: 17 ps, Rgyr: 17.0033 A
Frame: 17, Time: 18 ps, Rgyr: 17.0196 A
Frame: 18, Time: 19 ps, Rgyr: 17.0784 A
Frame: 19, Time: 20 ps, Rgyr: 17.1265 A

After iteration, the trajectory ‘resets’ back to the first frame. Please see the user guide for more information.

[25]: print(u.trajectory.frame)

0

You can set the timestep of the trajectory with the frame index:

[26]: print(u.trajectory[10].frame)

10

This persists until the timestep is next changed.

[27]: frame = u.trajectory.frame
time = u.trajectory.time
rgyr = u.atoms.radius_of_gyration()
print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(frame, time, rgyr))

Frame: 10, Time: 11 ps, Rgyr: 16.8521 A

Generally, trajectory analysis first collects frame-wise data in a list.

[28]: rgyr = []
time = []
protein = u.select_atoms("protein")
for ts in u.trajectory:

time.append(u.trajectory.time)
rgyr.append(protein.radius_of_gyration())

This can then be converted into other data structures, such as a numpy array or a pandas DataFrame. It can be plotted
(as below), or used for further analysis.

The following section requires the pandas package (installation: conda install pandas or pip install pandas)
and matplotlib (installation: conda install matplotlib or pip install matplotlib)
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[29]: import pandas as pd
rgyr_df = pd.DataFrame(rgyr, columns=['Radius of gyration (A)'], index=time)
rgyr_df.index.name = 'Time (ps)'

rgyr_df.head()

[29]: Radius of gyration (A)
Time (ps)
1.0 16.669018
2.0 16.673217
3.0 16.731454
4.0 16.722283
5.0 16.743961

[30]: rgyr_df.plot(title='Radius of gyration')
plt.show()
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Dynamic selection

As seen above, coordinates change while iterating over the trajectory. Therefore, properties calculated from the coor-
dinates, such as the radius of gyration, also change.

Selections are often defined on static properties that do not change when moving through a trajectory. Above, the static
selection is all the atoms that are in a protein. You can define the selection once and then recalculate the property of
interest for each frame of the trajectory.

However, some selections contain distance-dependent queries (such as around or point, see selection keywords for
more details). In this case, the selection should be updated for each time step using a dynamic selection by setting the
keyword updating=True. This command gives an UpdatingAtomGroup rather than a static AtomGroup.

[31]: dynamic = u.select_atoms('around 2 resname ALA', updating=True)
print(type(dynamic))
dynamic

<class 'MDAnalysis.core.groups.UpdatingAtomGroup'>

[31]: <AtomGroup with 54 atoms, with selection 'around 2 resname ALA' on the entire Universe.>

[32]: static = u.select_atoms('around 2 resname ALA')
print(type(static))
static

<class 'MDAnalysis.core.groups.AtomGroup'>

[32]: <AtomGroup with 54 atoms>

When you call the next frame of the universe, the atoms in the dynamic selection are updated, whereas the atoms in the
static selection remain the same.

[33]: u.trajectory.next()
dynamic

[33]: <AtomGroup with 56 atoms, with selection 'around 2 resname ALA' on the entire Universe.>

[34]: static

[34]: <AtomGroup with 54 atoms>
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Writing out coordinates

MDAnalysis supports writing data out into a range of file formats, including both single frame formats (e.g. PDB,
GRO) and trajectory writers (e.g. XTC, DCD, and multi-frame PDB files). (You can also write selections out to other
programs, such as VMD macros.)The user guide has a complete list of formats, each with their own reference pages.

Single frame

The most straightforward way to write to a file that can only hold a single frame is to use the write() method of any
AtomGroup. MDAnalysis uses the file extension to determine the output file format. For instance, to only write out the
𝐶𝛼 atoms to a file in GRO format:

ca = u.select_atoms('name CA')
ca.write('calphas.gro')

Trajectories

The standard way to write out trajectories is to:

1. Open a trajectory Writer and specify how many atoms a frame will contain

2. Iterate through the trajectory and write coordinates frame-by-frame with Writer.write()

3. If you do not use the context manager and the with statement below, you then need to close the trajectory with
.close().

For instance, to write out the 𝐶𝛼 atoms to a trajectory in the XTC format:

ca = u.select_atoms('name CA')
with mda.Writer('calphas.xtc', ca.n_atoms) as w:

for ts in u.trajectory:
w.write(ca)

Analysis

MDAnalysis comes with a diverse set of analysis modules, and the building blocks to implement your own. (Please see
a list of analysis tutorials in the user guide.)

The majority of these follow a common interface:

1. Initialise the analysis with a Universe and other required parameters.

2. Run the analysis with .run(). Optional arguments are the start frame index, stop frame index, step size,
and toggling verbose. The default is to run analysis on the whole trajectory.

3. Results are stored within the class.

4. Often, a function is available to operate on single frames.

However, not all analysis uses this model. It is important to check the documentation for each analysis. You can
also see examples in the Example gallery.

Below, simple RMSD analysis is shown. The rms module follows the interface above.
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RMSD

Not all sub-modules of MDAnalysis are imported with import MDAnalysis. Most analysis modules have to be
imported explicitly.

[35]: from MDAnalysis.analysis import rms

MDAnalysis provides a rmsd() function for calculating the RMSD between two numpy arrays of coordinates.

[36]: bb = u.select_atoms('backbone')

u.trajectory[0] # first frame
first = bb.positions

u.trajectory[-1] #last frame
last = bb.positions

rms.rmsd(first, last)

[36]: 6.852774844656239

An RMSD class is also provided to operate on trajectories.

Below, the RMSD class is created.

• The first argument is the AtomGroup or Universe for which the RMSD is calculated.

• As a reference AtomGroup or Universe is not given as the second argument, the default is to align to the current
frame of the first argument. Here it is set to the first frame.

• We choose to align the trajectory over the backbone atoms, and then compute the RMSD for the backbone atoms
(select).

• Then, without re-aligning the trajectory, the RMSD is also computed (groupselections) for the 𝐶𝛼 atoms
(name CA) and every protein atom (protein).

The RMSD is computed when we call .run().

[37]: u.trajectory[0] # set to first frame
rmsd_analysis = rms.RMSD(u, select='backbone', groupselections=['name CA', 'protein'])
rmsd_analysis.run()

[37]: <MDAnalysis.analysis.rms.RMSD at 0x140451fd0>

The results are stored in the results.rmsd attribute. This is an array with the shape (n_frames, 2 +
n_selections).

[38]: print(rmsd_analysis.results.rmsd.shape)

(98, 5)

We can interpret this as an array with 98 rows and 5 columns. Each row is the RMSD associated with a frame in the
trajectory. The columns are as follows:

1. Frame number

2. Time (ps)

3. RMSD (backbone)

4. RMSD (C-alpha)
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5. RMSD (protein)

We can turn this into a pandas DataFrame and plot the results.

[39]: import pandas as pd

rmsd_df = pd.DataFrame(rmsd_analysis.results.rmsd[:, 2:],
columns=['Backbone', 'C-alphas', 'Protein'],
index=rmsd_analysis.results.rmsd[:, 1])

rmsd_df.index.name = 'Time (ps)'
rmsd_df.head()

[39]: Backbone C-alphas Protein
Time (ps)
1.0 5.834344e-07 4.263638e-08 5.443850e-08
2.0 4.636592e-01 4.235205e-01 6.934167e-01
3.0 6.419340e-01 5.939111e-01 8.748416e-01
4.0 7.743983e-01 7.371346e-01 1.052780e+00
5.0 8.588600e-01 8.279498e-01 1.154986e+00

[40]: rmsd_df.plot(title='RMSD')

[40]: <Axes: title={'center': 'RMSD'}, xlabel='Time (ps)'>

See the the RMSD and alignment notebooks for more information.
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The primary sources of each module will be in their documentation.

Automatic citations with duecredit

Citations can be also be automatically generated using duecredit. Complete installation and usage instructions can
be found in the user guide, but it is simple to generate a list of citations for your python script my_script.py.

$ python -m duecredit my_script.py

This extracts citations into a hidden file, which can then be exported to different formats. For example, to display them
as BibTeX, use the command:

$ duecredit summary --format=bibtex

2.1.3 Frequently asked questions

Trajectories

Why do the atom positions change over trajectories?

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed.
The trajectory attribute of a Universe is actually (usually) a file reader. Think of the trajectory as a function 𝑋(𝑡)
of the frame index 𝑡 that makes the data from this specific frame available. This structure is important because it
allows MDAnalysis to work with trajectory files too large to fit into the computer’s memory. See Trajectories for more
information.
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2.1.4 Examples

MDAnalysis maintains a collection of Jupyter notebooks as examples of what the code can do. Each notebook can be
downloaded from GitHub to run on your own computer, or viewed as an online tutorial on the user guide. You can also
interact with each notebook on Binder.

Constructing, modifying, and adding to a Universe

MDAnalysis version: 0.20.1

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Sometimes you may want to construct a Universe from scratch, or add attributes that are not read from a file. For
example, you may want to group a Universe into chains, or create custom segments for protein domains.

In this tutorial we:

• create a Universe consisting of water molecules

• merge this with a protein Universe loaded from a file

• create custom segments labeling protein domains

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
import numpy as np
from IPython.core.display import Image

import warnings
# suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

print("Using MDAnalysis version", mda.__version__)

# Optionally, use NGLView to interactively view your trajectory
import nglview as nv
print("Using NGLView version", nv.__version__)

Using MDAnalysis version 2.6.0-dev0

Using NGLView version 3.0.3
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Creating and populating a Universe with water

Creating a blank Universe

The Universe.empty() method creates a blank Universe. The natoms (int) argument must be included. Optional
arguments are:

• n_residues (int): number of residues

• n_segments (int): number of segments

• atom_resindex (list): list of resindices for each atom

• residue_segindex (list): list of segindices for each residue

• trajectory (bool): whether to attach a MemoryReader trajectory (default False)

• velocities (bool): whether to include velocities in the trajectory (default False)

• forces (bool): whether to include forces in the trajectory (default False)

We will create a Universe with 1000 water molecules.

[2]: n_residues = 1000
n_atoms = n_residues * 3

# create resindex list
resindices = np.repeat(range(n_residues), 3)
assert len(resindices) == n_atoms
print("resindices:", resindices[:10])

# all water molecules belong to 1 segment
segindices = [0] * n_residues
print("segindices:", segindices[:10])

resindices: [0 0 0 1 1 1 2 2 2 3]
segindices: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[3]: # create the Universe
sol = mda.Universe.empty(n_atoms,

n_residues=n_residues,
atom_resindex=resindices,
residue_segindex=segindices,
trajectory=True) # necessary for adding coordinates

sol

[3]: <Universe with 3000 atoms>
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Adding topology attributes

There isn’t much we can do with our current Universe because MDAnalysis has no information on the particle elements,
positions, etc. We can add relevant information manually using TopologyAttrs.

names

[4]: sol.add_TopologyAttr('name', ['O', 'H1', 'H2']*n_residues)
sol.atoms.names

[4]: array(['O', 'H1', 'H2', ..., 'O', 'H1', 'H2'], dtype=object)

elements (“types”)
Elements are typically contained in the type topology attribute.

[5]: sol.add_TopologyAttr('type', ['O', 'H', 'H']*n_residues)
sol.atoms.types

[5]: array(['O', 'H', 'H', ..., 'O', 'H', 'H'], dtype=object)

residue names (“resnames”)

[6]: sol.add_TopologyAttr('resname', ['SOL']*n_residues)
sol.atoms.resnames

[6]: array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

residue counter (“resids”)

[7]: sol.add_TopologyAttr('resid', list(range(1, n_residues+1)))
sol.atoms.resids

[7]: array([ 1, 1, 1, ..., 1000, 1000, 1000])

segment/chain names (“segids”)

[8]: sol.add_TopologyAttr('segid', ['SOL'])
sol.atoms.segids

[8]: array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

Adding positions

Positions can simply be assigned, without adding a topology attribute.

The O-H bond length in water is around 0.96 Angstrom, and the bond angle is 104.45°. We can first obtain a set of
coordinates for one molecule, and then translate it for every water molecule.

[9]: # coordinates obtained by building a molecule in the program IQMol
h2o = np.array([[ 0, 0, 0 ], # oxygen

[ 0.95908, -0.02691, 0.03231], # hydrogen
[-0.28004, -0.58767, 0.70556]]) # hydrogen

[10]: grid_size = 10
spacing = 8

(continues on next page)
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(continued from previous page)

coordinates = []

# translating h2o coordinates around a grid
for i in range(n_residues):

x = spacing * (i % grid_size)
y = spacing * ((i // grid_size) % grid_size)
z = spacing * (i // (grid_size * grid_size))

xyz = np.array([x, y, z])

coordinates.extend(h2o + xyz.T)

print(coordinates[:10])

[array([0., 0., 0.]), array([ 0.95908, -0.02691, 0.03231]), array([-0.28004, -0.58767, ␣
→˓0.70556]), array([8., 0., 0.]), array([ 8.95908, -0.02691, 0.03231]), array([ 7.71996,
→˓ -0.58767, 0.70556]), array([16., 0., 0.]), array([16.95908, -0.02691, 0.03231]),␣
→˓array([15.71996, -0.58767, 0.70556]), array([24., 0., 0.])]

[11]: coord_array = np.array(coordinates)
assert coord_array.shape == (n_atoms, 3)
sol.atoms.positions = coord_array

We can view the atoms with NGLView, a library for visualising molecules. It guesses bonds based on distance.

[12]: # sol_view = nv.show_mdanalysis(sol)
# sol_view.add_representation('ball+stick', selection='all')
# sol_view.center()
# sol_view
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Adding bonds

Currently, the sol universe doesn’t contain any bonds.

[13]: assert not hasattr(sol, 'bonds')

They can be important for defining ‘fragments’, which are groups of atoms where every atom is connected by a bond
to another atom in the group (i.e. what is commonly called a molecule). You can pass a list of tuples of atom indices
to add bonds as a topology attribute.

[14]: bonds = []
for o in range(0, n_atoms, 3):

bonds.extend([(o, o+1), (o, o+2)])

bonds[:10]

[14]: [(0, 1),
(0, 2),
(3, 4),
(3, 5),
(6, 7),
(6, 8),
(9, 10),
(9, 11),
(12, 13),
(12, 14)]

[15]: sol.add_TopologyAttr('bonds', bonds)
sol.bonds

[15]: <TopologyGroup containing 2000 bonds>

The bonds associated with each atom or the bonds within an AtomGroup can be accessed with the bonds attribute:

[16]: print(sol.atoms[0].bonds)
print(sol.atoms[-10:].bonds)

<TopologyGroup containing 2 bonds>
<TopologyGroup containing 7 bonds>

Merging with a protein

Now we can merge the water with a protein to create a combined system by using MDAnalysis.Merge to combine
AtomGroup instances.

The protein is adenylate kinase (AdK), a phosphotransferase enzyme. [1]

[17]: protein = mda.Universe(PDB_small)

[18]: # protein_view = nv.show_mdanalysis(protein)
# protein_view
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We will translate the centers of both systems to the origin, so they can overlap in space.

[19]: cog = sol.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
sol.atoms.positions -= cog
cog2 = sol.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [36.22634681 35.79514029 36.24595657]
New solvent center of geometry: [ 2.78155009e-07 -1.27156576e-07 3.97364299e-08]

[20]: cog = protein.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
protein.atoms.positions -= cog
cog2 = protein.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [-3.66508082 9.60502842 14.33355791]
New solvent center of geometry: [8.30580288e-08 3.49225059e-08 2.51332265e-08]

[21]: combined = mda.Merge(protein.atoms, sol.atoms)

[22]: # combined_view = nv.show_mdanalysis(combined)
# combined_view.add_representation("ball+stick", selection="not protein")
# combined_view

Unfortunately, some water molecules overlap with the protein. We can create a new AtomGroup containing only the
molecules where every atom is further away than 6 angstroms from the protein.
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[23]: no_overlap = combined.select_atoms("same resid as (not around 6 protein)")

With this AtomGroup, we can then construct a new Universe.

[24]: u = mda.Merge(no_overlap)

[25]: # no_overlap_view = nv.show_mdanalysis(u)
# no_overlap_view.add_representation("ball+stick", selection="not protein")
# no_overlap_view

Adding a new segment

Often you may want to assign atoms to a segment or chain – for example, adding segment IDs to a PDB file. This
requires adding a new Segment with Universe.add_Segment.

Adenylate kinase has three domains: CORE, NMP, and LID. As shown in the picture below,[1] these have the residues:

• CORE: residues 1-29, 60-121, 160-214 (gray)

• NMP: residues 30-59 (blue)

• LID: residues 122-159 (yellow)

[26]: u.segments.segids

[26]: array(['4AKE', 'SOL'], dtype=object)

On examining the Universe, we can see that the protein and solvent are already divided into two segments: protein
(‘4AKE’) and solvent (‘SOL’). We will add three more segments (CORE, NMP, and LID) and assign atoms to them.

First, add a Segment to the Universe with a segid. It will be empty:

[27]: core_segment = u.add_Segment(segid='CORE')
core_segment.atoms

[27]: <AtomGroup with 0 atoms>

Residues can’t be broken across segments. To put atoms in a segment, assign the segments attribute of their residues:

[28]: core_atoms = u.select_atoms('resid 1:29 or resid 60:121 or resid 160-214')
core_atoms.residues.segments = core_segment
core_segment.atoms
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[28]: <AtomGroup with 2744 atoms>

[29]: nmp_segment = u.add_Segment(segid='NMP')
lid_segment = u.add_Segment(segid='LID')

nmp_atoms = u.select_atoms('resid 30:59')
nmp_atoms.residues.segments = nmp_segment

lid_atoms = u.select_atoms('resid 122:159')
lid_atoms.residues.segments = lid_segment

As of MDAnalysis 2.1.0, PDBs use the chainID TopologyAttr for the chainID column. If it is missing, it uses a
placeholder “X” value instead of the segid. We therefore must manually set that ourselves to visualise the protein in
NGLView.

[30]: # add the topologyattr to the universe
u.add_TopologyAttr("chainID")
core_segment.atoms.chainIDs = "C"
nmp_segment.atoms.chainIDs = "N"
lid_segment.atoms.chainIDs = "L"

We can check that we have the correct domains by visualising the protein.

[31]: # domain_view = nv.show_mdanalysis(u)
# domain_view.add_representation("protein", color_scheme="chainID")
# domain_view

Tiling into a larger Universe

We can use MDAnalysis to tile out a smaller Universe into a bigger one, similarly to editconf in GROMACS. To start
off, we need to figure out the box size. The default in MDAnalysis is a zero vector. The first three numbers represent
the length of each axis, and the last three represent the alpha, beta, and gamma angles of a triclinic box.

[32]: print(u.dimensions)

None

We know that our system is cubic in shape, so we can assume angles of 90°. The difference between the lowest and
highest x-axis positions is roughly 73 Angstroms.
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[33]: max(u.atoms.positions[:, 0]) - min(u.atoms.positions[:, 0])

[33]: 73.23912

So we can set our dimensions.

[34]: u.dimensions = [73, 73, 73, 90, 90, 90]

To tile out a Universe, we need to copy it and translate the atoms by the box dimensions. We can then merge the cells
into one large Universe and assign new dimensions.

[35]: def tile_universe(universe, n_x, n_y, n_z):
box = universe.dimensions[:3]
copied = []
for x in range(n_x):

for y in range(n_y):
for z in range(n_z):

u_ = universe.copy()
move_by = box*(x, y, z)
u_.atoms.translate(move_by)
copied.append(u_.atoms)

new_universe = mda.Merge(*copied)
new_box = box*(n_x, n_y, n_z)
new_universe.dimensions = list(new_box) + [90]*3
return new_universe

Here is a 2 x 2 x 2 version of our original unit cell:

[36]: tiled = tile_universe(u, 2, 2, 2)

[37]: # tiled_view = nv.show_mdanalysis(tiled)
# tiled_view
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Transformations

Centering a trajectory in the box

Here we use MDAnalysis transformations to make a protein whole, center it in the box, and then wrap the water back
into the box. We then look at how to do this on-the-fly.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation: * nglview ([NCR18])

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

See also:
• On-the-fly transformations

• On-the-fly transformations (blog post)

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
import numpy as np
# import nglview as nv

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

For the step-by-step transformations, we need to load the trajectory into memory so that our changes to the coordinates
persist. If your trajectory is too large for that, see the on-the-fly transformation section for how to do this out-of-memory.

[2]: u = mda.Universe(TPR, XTC, in_memory=True)
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Before transformation

If you have NGLView installed, you can view the trajectory as it currently is.

[3]: # view = nv.show_mdanalysis(u)
# view.add_representation('point', 'resname SOL')
# view.center()
# view

[4]: # from nglview.contrib.movie import MovieMaker
# movie = MovieMaker(
# view,
# step=2,
# render_params={"factor": 2}, # average quality render
# output='original.gif',
# )
# movie.make()

Otherwise, we embed a gif of it below.

For easier analysis and nicer visualisation, we want to center this protein in the box.

Unwrapping the protein

The first step is to “unwrap” the protein from the border of the box, to make the protein whole. MDAnalysis provides
the AtomGroup.unwrap function to do this easily. Note that this function requires your universe to have bonds in it.

We loop over the trajectory to unwrap for each frame.

[5]: protein = u.select_atoms('protein')

for ts in u.trajectory:
protein.unwrap(compound='fragments')

As you can see, the protein is now whole, but not centered.

[6]: # unwrapped = nv.show_mdanalysis(u)
# unwrapped.add_representation('point', 'resname SOL')
# unwrapped.center()
# unwrapped

Over the course of the trajectory it leaves the box.
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Centering in the box

The next step is to center the protein in the box. We calculate the center-of-mass of the protein and the center of the
box for each timestep. We then move all the atoms so that the protein center-of-mass is in the center of the box.

If you don’t have masses in your trajectory, try using the center_of_geometry.

[7]: for ts in u.trajectory:
protein_center = protein.center_of_mass(wrap=True)
dim = ts.triclinic_dimensions
box_center = np.sum(dim, axis=0) / 2
u.atoms.translate(box_center - protein_center)

The protein is now in the center of the box, but the solvent is likely outside it, as we have just moved all the atoms.

[8]: # centered = nv.show_mdanalysis(u)
# centered.add_representation('point', 'resname SOL')
# centered.center()
# centered

Wrapping the solvent back into the box

Luckily, MDAnalysis also has AtomGroup.wrap to wrap molecules back into the box. Our trajectory has dimensions
defined, which the function will find automatically. If your trajectory does not, or you wish to use a differently sized
box, you can pass in a box with dimensions in the form [lx, ly, lz, alpha, beta, gamma].

[9]: not_protein = u.select_atoms('not protein')

for ts in u.trajectory:
not_protein.wrap(compound='residues')

And now it is centered!

[10]: # wrapped = nv.show_mdanalysis(u)
# wrapped.add_representation('point', 'resname SOL')
# wrapped.center()
# wrapped

Doing all this on-the-fly

Running all the transformations above can be difficult if your trajectory is large, or your computational resources are
limited. Use on-the-fly transformations to keep your data out-of-memory.

Some common transformations are defined in MDAnalysis.transformations.

[11]: import MDAnalysis.transformations as trans

We re-load our universe.
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[12]: u2 = mda.Universe(TPR, XTC)

protein2 = u2.select_atoms('protein')
not_protein2 = u2.select_atoms('not protein')

From version 1.0.0 onwards, the MDAnalysis.transformations module contains wrap and unwrap functions that
correspond with the AtomGroup versions above. You can only use add_transformations once, so pass them all at
the same time.

[13]: transforms = [trans.unwrap(protein2),
trans.center_in_box(protein2, wrap=True),
trans.wrap(not_protein2)]

u2.trajectory.add_transformations(*transforms)

[14]: # otf = nv.show_mdanalysis(u2)
# otf.add_representation('point', 'resname SOL')
# otf.center()
# otf
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Other

Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms

Here we use MDAnalysis to convert a ParmEd structure to an MDAnalysis Universe, select a subset of atoms, and
convert it back to ParmEd to simulate with OpenMM.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0
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Packages required:
• MDAnalysis [1, 2]

• MDAnalysisTests

• ParmEd

• OpenMM [3]

[1]: import parmed as pmd
import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PRM7_ala2, RST7_ala2

import warnings
# suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files: the difference between ParmEd and MDAnalysis

Both ParmEd and MDAnalysis read a number of file formats. However, while MDAnalysis is typically used to analyse
simulations, ParmEd is often used to set them up. This requires ParmEd to read topology parameter information that
MDAnalysis typically ignores, such as the equilibrium length and force constants of bonds in the system. For example,
the ParmEd structure below.

[2]: pprm = pmd.load_file(PRM7_ala2, RST7_ala2)
pprm

[2]: <AmberParm 3026 atoms; 1003 residues; 3025 bonds; PBC (orthogonal); parameterized>

[3]: pprm.bonds[0]

[3]: <Bond <Atom C [10]; In ALA 0>--<Atom O [11]; In ALA 0>; type=<BondType; k=570.000, req=1.
→˓229>>

When MDAnalysis reads these files in, it does not include that information.

[4]: mprm = mda.Universe(PRM7_ala2, RST7_ala2, format='RESTRT')
mprm

[4]: <Universe with 3026 atoms>

The bond type simply shows the atom types involved in the connection.

[5]: mprm.atoms.bonds[0].type

[5]: ('N3', 'H')

If you then convert this Universe to ParmEd, you can see that the resulting Structure is not parametrized.

[6]: mprm_converted = mprm.atoms.convert_to('PARMED')
mprm_converted

[6]: <Structure 3026 atoms; 1003 residues; 3025 bonds; parameterized>

While the bonds are present, there is no type information associated.
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[7]: mprm_converted.bonds[0]

[7]: <Bond <Atom N [0]; In ALA 0>--<Atom H1 [1]; In ALA 0>; type=None>

Therefore, if you wish to use ParmEd functionality that requires parametrization on a MDAnalysis Universe, you need
to create that Universe from a ParmEd structure in order to convert it back to something useable in ParmEd.

[8]: mprm_from_parmed = mda.Universe(pprm)
mprm_from_parmed

[8]: <Universe with 3026 atoms>

Now the bond type is actually a ParmEd Bond object.

[9]: mprm_from_parmed.bonds[0].type

[9]: <Bond <Atom N [0]; In ALA 0>--<Atom H1 [1]; In ALA 0>; type=<BondType; k=434.000, req=1.
→˓010>>

Using MDAnalysis to select atoms

One reason we might want to convert a ParmEd structure into MDAnalysis is to use its sophisticated atom selection
syntax. While ParmEd has its own ways to select atoms, MDAnalysis allows you to select atoms based on geometric
distance.

[10]: water = mprm_from_parmed.select_atoms('around 5 protein').residues.atoms
protein_shell = mprm_from_parmed.select_atoms('protein') + water
prm_protein_shell = protein_shell.convert_to('PARMED')

[11]: prm_protein_shell

[11]: <Structure 155 atoms; 46 residues; 154 bonds; PBC (orthogonal); parameterized>

Using ParmEd and OpenMM to create a simulation system

[12]: import sys
import openmm as mm
import openmm.app as app
from parmed import unit as u
from parmed.openmm import StateDataReporter, MdcrdReporter

You can create an OpenMM simulation system directly from a ParmEd structure, providing that it is parametrized.

[13]: system = prm_protein_shell.createSystem(nonbondedMethod=app.NoCutoff,
constraints=app.HBonds,
implicitSolvent=app.GBn2)

Here we set the integrator to do Langevin dynamics.

[14]: integrator = mm.LangevinIntegrator(
300*u.kelvin, # Temperature of heat bath
1.0/u.picoseconds, # Friction coefficient

(continues on next page)
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(continued from previous page)

2.0*u.femtoseconds, # Time step
)

We create the Simulation object and set particle positions.

[15]: sim = app.Simulation(prm_protein_shell.topology, system, integrator)
sim.context.setPositions(prm_protein_shell.positions)

We now minimise the energy.

[16]: sim.minimizeEnergy(maxIterations=500)

The reporter below reports energies and coordinates every 100 steps to stdout, but every 10 steps to the ala2_shell.nc
file.

[17]: sim.reporters.append(
StateDataReporter(sys.stdout, 100, step=True, potentialEnergy=True,

kineticEnergy=True, temperature=True, volume=True,
density=True)

)
sim.reporters.append(MdcrdReporter('ala2_shell.trj', 10, crds=True))

We can run dynamics for 500 steps (1 picosecond).

[18]: sim.step(500)

#"Step","Time (ps)","Potential Energy (kilocalorie/mole)","Kinetic Energy (kilocalorie/
→˓mole)","Total Energy (kilocalorie/mole)","Temperature (K)","Box Volume (angstrom**3)",
→˓"Density (gram/(item*milliliter))"
100,0.20000000000000015,-623.6779995219885,20.140631869613383,-603.5373676523751,63.
→˓74314071570579,45325.8064191062,0.034909350700361955
200,0.4000000000000003,-614.1849904397706,38.40737137186695,-575.7776190679035,121.
→˓55559436896063,45325.8064191062,0.034909350700361955
300,0.6000000000000004,-606.5526783580306,48.61919832973248,-557.933480028298,153.
→˓87503334950912,45325.8064191062,0.034909350700361955
400,0.8000000000000006,-600.0374380078872,57.988937528818184,-542.0485004790689,183.
→˓52934648642113,45325.8064191062,0.034909350700361955
500,1.0000000000000007,-603.2854886173518,79.46589388029852,-523.8195947370533,251.
→˓50182419815255,45325.8064191062,0.034909350700361955

If we write a topology file out from our former protein_shell atomgroup, we can load the trajectory in for further
analysis.

[19]: protein_shell.write('ala2_shell.pdb')

[20]: u = mda.Universe('ala2_shell.pdb', 'ala2_shell.trj')

[21]: u.trajectory

[21]: <TRJReader ala2_shell.trj with 50 frames of 155 atoms>
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Alignments and RMS fitting

The MDAnalysis.analysis.align and MDAnalysis.analysis.rms modules contain the functions used for align-
ing structures, aligning trajectories, and calculating root mean squared quantities.

Demonstrations of alignment are in align_structure, align_trajectory_first, and align_trajectory. Another example of
generating an average structure from an alignment is demonstrated in rmsf. Typically, trajectories need to be aligned
for RMSD and RMSF values to make sense.

Note: These modules use the fast QCP algorithm to calculate the root mean square distance (RMSD) between two
coordinate sets [The05] and the rotation matrix R that minimizes the RMSD [LAT09]. Please cite these references
when using these modules.

Aligning a structure to another

We use align.alignto to align a structure to another.

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for molecular visualisation:
• nglview ([NCR18])

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

See also
• Aligning a trajectory to a frame from another

• Aligning a trajectory to a frame from itself
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• RMSD

Note
MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that min-
imises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align
module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import CRD, PSF, DCD, DCD2
# import nglview as nv

import warnings
# suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]: adk_open = mda.Universe(CRD, DCD2)
adk_closed = mda.Universe(PSF, DCD)

[3]: # adk_open_view = nv.show_mdanalysis(adk_open)
# adk_open_view

[4]: # adk_closed_view = nv.show_mdanalysis(adk_closed)
# adk_closed_view

Currently, the proteins are not aligned to each other. The difference becomes even more obvious when the closed
conformation is compared to the open. Below, we set adk_open to the last frame and see the relative positions of each
protein in a merged Universe.

[5]: adk_open.trajectory[-1] # last frame
merged = mda.Merge(adk_open.atoms, adk_closed.atoms)

[6]: # merged_view = nv.show_mdanalysis(merged)
# merged_view
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Aligning a structure with align.alignto

alignto (API docs) aligns the mobile AtomGroup to the target AtomGroup by minimising the root mean square
deviation (RMSD) between particle positions (please see the linked notebook for an explanation of RMSD). It returns
(old_rmsd, new_rmsd). By default (match_atoms=True), it will attempt to match the atoms between the mobile and
reference structures by mass.

[7]: rmsds = align.alignto(adk_open, # mobile
adk_closed, # reference
select='name CA', # selection to operate on
match_atoms=True) # whether to match atoms

print(rmsds)

(21.712154435976014, 6.817293751703919)

[8]: # aligned_view = nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))
# aligned_view

However, you may want to align to a structure that where there is not a clear match in particle mass. For example, you
could be aligning the alpha-carbons of an atomistic protein to the backbone beads of a coarse-grained structure. Below,
we use the somewhat contrived example of aligning 214 alpha-carbons to the first 214 atoms of the reference structure.
In this case, we need to switch match_atoms=False or the alignment will error.

[9]: rmsds = align.alignto(adk_open.select_atoms('name CA'), # mobile
adk_closed.atoms[:214], # reference
select='all', # selection to operate on

(continues on next page)
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(continued from previous page)

match_atoms=False) # whether to match atoms
print(rmsds)

(18.991465038265208, 16.603704620787127)

[10]: # shifted_aligned_view = nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))
# shifted_aligned_view

When we align structures, positions are set temporarily. If we flip to the first frame of adk_open and back to the last
frame, we can see that it has returned to its original location.

[11]: adk_open.trajectory[0] # set to first frame
adk_open.trajectory[-1] # set to last frame

[11]: < Timestep 101 >

[12]: # reset_view = nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))
# reset_view

You can save the aligned positions by writing them out to a PDB file and creating a new Universe.

[13]: align.alignto(adk_open, adk_closed, select='name CA')
adk_open.atoms.write('aligned.pdb')

[14]: # from_file_view = nv.show_mdanalysis(mda.Universe('aligned.pdb'))
# from_file_view
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Aligning a trajectory to a reference

We use align.AlignTraj to align a trajectory to a frame in a reference trajectory and write it to a file.

Last updated: December 2022

Minimum version of MDAnalysis: 2.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for molecular visualisation:
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• nglview ([NCR18])

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

See also
• Aligning a trajectory to a frame from itself

• Aligning a structure to another

• RMSD

Note
MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that min-
imises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align
module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import CRD, PSF, DCD, DCD2
# import nglview as nv

import warnings
# suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]: adk_open = mda.Universe(CRD, DCD2)
adk_closed = mda.Universe(PSF, DCD)

Currently, the proteins are not aligned to each other. The difference becomes obvious when the closed conformation
is compared to the open. Below, we set adk_open to the last frame and see the relative positions of each protein in a
merged Universe.

[3]: adk_open.trajectory[-1] # last frame
merged = mda.Merge(adk_open.atoms, adk_closed.atoms)

[4]: # merged_view = nv.show_mdanalysis(merged)
# merged_view
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Aligning a trajectory with AlignTraj

While align.alignto aligns structures, or a frame of a trajectory, align.AlignTraj (API docs) efficiently aligns an
entire trajectory to a reference. Unlike most other analysis modules, AlignTraj allows you to write the output of
the analysis to a file. This is because when Universes are created by loading from a file, changes to frame-by-frame
(dynamic) information do not persist when the frame is changed. If the trajectory is not written to a file, or pulled into
memory (below), AlignTraj will have no effect.

[5]: align.AlignTraj(adk_closed, # trajectory to align
adk_open, # reference
select='name CA', # selection of atoms to align
filename='aligned.dcd', # file to write the trajectory to
match_atoms=True, # whether to match atoms based on mass
).run()

# merge adk_closed and adk_open into the same universe
merged1 = mda.Merge(adk_closed.atoms, adk_open.atoms)

[6]: # merged1_view = nv.show_mdanalysis(merged1)
# merged1_view

As you can see, the adk_closed and adk_open trajectories still look the same. However, when we load our aligned
trajectory from aligned.dcd, we can see them superposed:

[7]: aligned = mda.Universe(PSF, 'aligned.dcd')
aligned.segments.segids = ['Aligned'] # rename our segments
adk_open.segments.segids = ['Open'] # so they're coloured differently
merged2 = mda.Merge(aligned.atoms, adk_open.atoms)
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[8]: # merged2_view = nv.show_mdanalysis(merged2)
# merged2_view

If you don’t want to write a file, you can also choose to load the entire trajectory into memory. (This is not always
feasible depending on how large your trajectory is, and how much memory your device has, in which case it is much
more efficient to write an aligned trajectory to a file as above). You can accomplish this in one of two ways:

1. Load the trajectory into memory in the first place

adk_closed = mda.Universe(PSF, DCD, in_memory=True)

2. Select in_memory=True during AlignTraj (below)

[9]: align.AlignTraj(adk_closed, # trajectory to align
adk_open, # reference
select='name CA', # selection of atoms to align
filename='aligned.dcd', # file to write the trajectory to
match_atoms=True, # whether to match atoms based on mass
in_memory=True
).run()

# merge adk_closed and adk_open into the same universe
merged3 = mda.Merge(adk_closed.atoms, adk_open.atoms)

Copying coordinates into a new Universe

MDAnalysis.Merge does not automatically load coordinates for a trajectory. We can do this ourselves. Below, we
copy the coordinates of the 98 frames in the aligned universe.

[10]: from MDAnalysis.analysis.base import AnalysisFromFunction
import numpy as np
from MDAnalysis.coordinates.memory import MemoryReader

def copy_coords(ag):
return ag.positions.copy()

aligned_coords = AnalysisFromFunction(copy_coords,
aligned.atoms).run().results

print(aligned_coords['timeseries'].shape)
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(98, 3341, 3)

To contrast, we will keep the open conformation static.

[11]: adk_coords = adk_open.atoms.positions.copy()
adk_coords.shape

[11]: (3341, 3)

Because there are 98 frames of the aligned Universe, we copy the coordinates of the adk_open positions and stack
them.

[12]: adk_traj_coords = np.stack([adk_coords] * 98)
adk_traj_coords.shape

[12]: (98, 3341, 3)

We join aligned_coords and adk_traj_coords on the second axis with np.hstack and load the coordinates into
memory into the merged2 Universe.

[13]: merged_coords = np.hstack([aligned_coords['timeseries'],
adk_traj_coords])

merged2.load_new(merged_coords, format=MemoryReader)

[13]: <Universe with 6682 atoms>

[14]: # m2_view = nv.show_mdanalysis(merged2)
# m2_view

Online notebooks do not show the molecule trajectory, but here you can use nglview.contrib.movie.MovieMaker
to make a gif of the trajectory. This requires you to install moviepy.

[15]: # from nglview.contrib.movie import MovieMaker
# movie = MovieMaker(
# m2_view,
# step=4, # only render every 4th frame
# output='merged.gif',
# render_params={"factor": 3}, # set to 4 for higher quality
# )
# movie.make()

Writing trajectories to a file

Finally, we can also save this new trajectory to a file.

[16]: with mda.Writer('aligned.xyz', merged2.atoms.n_atoms) as w:
for ts in merged2.trajectory:

w.write(merged2.atoms)
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Aligning a trajectory to itself

We use align.AlignTraj to align a trajectory to a reference frame and write it to a file.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

See also
• Aligning a trajectory to a frame from another

• Aligning a structure to another

• RMSD

Note
MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that min-
imises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align
module in published work.
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[1]: import MDAnalysis as mda
from MDAnalysis.analysis import align, rms
from MDAnalysis.tests.datafiles import PSF, DCD

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectory samples a transition from a closed to an open conformation.

[2]: mobile = mda.Universe(PSF, DCD)
ref = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Aligning a trajectory to the first frame

While align.alignto aligns structures, or a frame of a trajectory, align.AlignTraj (API docs) efficiently aligns an
entire trajectory to a reference.

We first check the root mean square deviation (RMSD) values of our unaligned trajectory, so we can compare results
(please see the linked notebook for an explanation of RMSD). The code below sets the mobile trajectory to the last
frame by indexing the last timestep, ref to the first frame by indexing the first timestep, and computes the root mean
squared deviation between the alpha-carbon positions.

[3]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
unaligned_rmsd = rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)
print(f"Unaligned RMSD: {unaligned_rmsd:.2f}")

Unaligned RMSD: 6.84

Now we can align the trajectory. We have already set ref to the first frame. In the cell below, we load the positions of
the trajectory into memory so we can modify the trajectory in Python.

[4]: aligner = align.AlignTraj(mobile, ref, select='name CA', in_memory=True).run()

If you don’t have enough memory to do that, write the trajectory out to a file and reload it into MDAnalysis (uncomment
the cell below). Otherwise, you don’t have to run it.

[5]: # aligner = align.AlignTraj(mobile, ref, select='backbone',
# filename='aligned_to_first_frame.dcd').run()
# mobile = mda.Universe(PSF, 'aligned_to_first_frame.dcd')

Now we can see that the RMSD has reduced (minorly).
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[6]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
aligned_rmsd = rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)

print(f"Aligned RMSD: {aligned_rmsd:.2f}")

Aligned RMSD: 6.81

Aligning a trajectory to the third frame

We can align the trajectory to any frame: for example, the third one. The procedure is much the same, except that we
must set ref to the third frame by indexing the third timestep.

[7]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

aligned_rmsd_3 = rms.rmsd(mobile.atoms.positions, ref.atoms.positions,␣
→˓superposition=False)

print(f"Aligned RMSD: {aligned_rmsd_3:.2f}")

Aligned RMSD: 6.73

[8]: aligner = align.AlignTraj(mobile, ref, select='all', in_memory=True).run()

[9]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

aligned_rmsd_3 = rms.rmsd(mobile.atoms.positions, ref.atoms.positions,␣
→˓superposition=False)
print(f"Aligned RMSD, all-atom: {aligned_rmsd_3:.2f}")

Aligned RMSD, all-atom: 6.72
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Calculating the root mean square deviation of atomic structures

We calculate the RMSD of domains in adenylate kinase as it transitions from an open to closed structure, and look at
calculating weighted RMSDs.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• pandas

See also
• Pairwise (2D) RMSD

• RMSF

Note
MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite ([The05]) when using
the MDAnalysis.analysis.align module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, CRD
from MDAnalysis.analysis import rms

import pandas as pd
# the next line is necessary to display plots in Jupyter
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectory DCD samples a transition from a closed to an open conformation. AdK has three domains:

• CORE

• LID: an ATP-binding domain

• NMP: an AMP-binding domain

The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed
conformations. One way to quantify this movement is by calculating the root mean square deviation (RMSD) of atomic
positions.
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[2]: u = mda.Universe(PSF, DCD) # closed AdK (PDB ID: 1AKE)
ref = mda.Universe(PSF, CRD) # open AdK (PDB ID: 4AKE)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Background

The root mean square deviation (RMSD) of particle coordinates is one measure of distance, or dissimilarity, between
molecular conformations. Each structure should have matching elementwise atoms 𝑖 in the same order, as the distance
between them is calculated and summed for the final result. It is calculated between coordinate arrays x and xref

according to the equation below:

RMSD(x,xref) =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

|x𝑖 − xref
𝑖 |2

As molecules can move around, the structure x is usually translated by a vector t and rotated by a matrix R to align
with the reference xref such that the RMSD is minimised. The RMSD after this optimal superposition can be expressed
as follows:

RMSD(x,xref) = min
R,t

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

[︀
(R · x𝑖(𝑡) + t)− xref

𝑖

]︀2
The RMSD between one reference state and a trajectory of structures is often calculated as a way to measure the
dissimilarity of the trajectory conformational ensemble to the reference. This reference is frequently the first frame
of the trajectory (the default in MDAnalysis), in which case it can provide insight into the overall movement from
the initial starting point. While stable RMSD values from a reference structure are frequently used as a measure of
conformational convergence, this metric suffers from the problem of degeneracy: many different structures can have
the same RMSD from the same reference. For an alternative measure, you could use pairwise or 2D RMSD.

Typically not all coordinates in a structures are included in an RMSD analysis. With proteins, the fluctuation of the
residue side-chains is not representative of overall conformational change. Therefore when RMSD analyses are per-
formed to investigate large-scale movements in proteins, the atoms are usually restricted only to the backbone atoms
(forming the amide-bond chain) or the alpha-carbon atoms.

MDAnalysis provides functions and classes to calculate the RMSD between coordinate arrays, and Universes or Atom-
Groups.

The contribution of each particle 𝑖 to the final RMSD value can also be weighted by 𝑤𝑖:

RMSD(x,xref) =

√︃∑︀𝑛
𝑖=1 𝑤𝑖|x𝑖 − xref

𝑖 |2∑︀𝑛
𝑖−1 𝑤𝑖

RMSD analyses are frequently weighted by mass. The MDAnalysis RMSD class (API docs) allows you to both select
mass-weighting with weights='mass' or weights_groupselections='mass', or to pass custom arrays into either
keyword.

2.1. Communications 51

https://docs.mdanalysis.org/stable/documentation_pages/analysis/rms.html#MDAnalysis.analysis.rms.RMSD


MDAnalysis User Guide

RMSD between two sets of coordinates

The MDAnalysis.analysis.rms.rmsd function returns the root mean square deviation (in Angstrom) between two
sets of coordinates. Here, we calculate the RMSD between the backbone atoms of the open and closed conformations
of AdK. Only considering the backbone atoms is often more helpful than calculating the RMSD for all the atoms, as
movement in amino acid side-chains isn’t indicative of overall conformational change.

[3]: rms.rmsd(u.select_atoms('backbone').positions, # coordinates to align
ref.select_atoms('backbone').positions, # reference coordinates
center=True, # subtract the center of geometry
superposition=True) # superimpose coordinates

[3]: 6.823686867261616

RMSD of a Universe with multiple selections

It is more efficient to use the MDAnalysis.analysis.rms.RMSD class to calculate the RMSD of an entire trajectory
to a single reference point, than to use the the MDAnalysis.analysis.rms.rmsd function.

The rms.RMSD class first performs a rotational and translational alignment of the target trajectory to the reference uni-
verse at ref_frame, using the atoms in select to determine the transformation. The RMSD of the select selection
is calculated. Then, without further alignment, the RMSD of each group in groupselections is calculated.

[4]: CORE = 'backbone and (resid 1-29 or resid 60-121 or resid 160-214)'
LID = 'backbone and resid 122-159'
NMP = 'backbone and resid 30-59'

[5]: R = rms.RMSD(u, # universe to align
u, # reference universe or atomgroup
select='backbone', # group to superimpose and calculate RMSD
groupselections=[CORE, LID, NMP], # groups for RMSD
ref_frame=0) # frame index of the reference

R.run()

[5]: <MDAnalysis.analysis.rms.RMSD at 0x7f2e830164f0>

The data is saved in R.rmsd as an array.

[6]: R.results.rmsd.shape

[6]: (98, 6)

R.rmsd has a row for each timestep. The first two columns of each row are the frame index of the time step, and the
time (which is guessed in trajectory formats without timesteps). The third column is RMSD of select. The last few
columns are the RMSD of the groups in groupselections.
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Plotting the data

We can easily plot this data using the common data analysis package pandas. We turn the R.rmsd array into a DataFrame
and label each column below.

[7]: df = pd.DataFrame(R.results.rmsd,
columns=['Frame', 'Time (ns)',

'Backbone', 'CORE',
'LID', 'NMP'])

df

[7]: Frame Time (ns) Backbone CORE LID NMP
0 0.0 1.000000 5.834344e-07 3.921486e-08 1.197000e-07 6.276497e-08
1 1.0 2.000000 4.636592e-01 4.550181e-01 4.871915e-01 4.745572e-01
2 2.0 3.000000 6.419340e-01 5.754418e-01 7.940994e-01 7.270191e-01
3 3.0 4.000000 7.743983e-01 6.739184e-01 1.010261e+00 8.795031e-01
4 4.0 5.000000 8.588600e-01 7.318859e-01 1.168397e+00 9.612989e-01
.. ... ... ... ... ... ...
93 93.0 93.999992 6.817898e+00 3.504430e+00 1.143376e+01 1.029266e+01
94 94.0 94.999992 6.804211e+00 3.480681e+00 1.141134e+01 1.029879e+01
95 95.0 95.999992 6.807987e+00 3.508946e+00 1.137593e+01 1.031958e+01
96 96.0 96.999991 6.821205e+00 3.498081e+00 1.139156e+01 1.037768e+01
97 97.0 97.999991 6.820322e+00 3.507119e+00 1.138474e+01 1.036821e+01

[98 rows x 6 columns]

[8]: ax = df.plot(x='Frame', y=['Backbone', 'CORE', 'LID', 'NMP'],
kind='line')

ax.set_ylabel(r'RMSD ($\AA$)')

[8]: Text(0, 0.5, 'RMSD ($\\AA$)')
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RMSD of an AtomGroup with multiple selections

The RMSD class accepts both AtomGroups and Universes as arguments. Restricting the atoms considered to an Atom-
Group can be very helpful, as the select and groupselections arguments are applied only to the atoms in the
original AtomGroup. In the example below, for example, only the alpha-carbons of the CORE domain are incorporated
in the analysis.

Note
This feature does not currently support groupselections.

[9]: ca = u.select_atoms('name CA')

R = rms.RMSD(ca, ca, select=CORE, ref_frame=0)
R.run()

[9]: <MDAnalysis.analysis.rms.RMSD at 0x7f2e80561610>

[10]: df = pd.DataFrame(R.results.rmsd,
columns=['Frame', 'Time (ns)',

'CORE'])

(continues on next page)
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(continued from previous page)

ax = df.plot(x='Frame', y='CORE', kind='line')
ax.set_ylabel('RMSD ($\AA$)')

[10]: Text(0, 0.5, 'RMSD ($\\AA$)')

Weighted RMSD of a trajectory

You can also calculate the weighted RMSD of a trajectory using the weights and weights_groupselections key-
words. The former only applies weights to the group in select, while the latter must be a list of the same length and
order as groupselections. If you would like to only weight certain groups in groupselections, use None for
the unweighted groups. Both weights and weights_groupselections accept None (for unweighted), 'mass' (to
weight by mass), and custom arrays. A custom array should have the same number of values as there are particles in
the corresponding AtomGroup.
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Mass

It is common to weight RMSD analyses by particle weight, so the RMSD class accepts 'mass' as an argument
for weights. Note that the weights keyword only applies to the group in select, and does not apply to the
groupselections; these remain unweighted below.

[11]: R_mass = rms.RMSD(u, u,
select='protein and name CA',
weights='mass',
groupselections=[CORE, LID, NMP])

R_mass.run()

[11]: <MDAnalysis.analysis.rms.RMSD at 0x7f2e804833d0>

The plot looks largely the same as above because all the alpha-carbons and individual backbone atoms have the same
mass. Below we show how you can pass in custom weights.

[12]: df_mass = pd.DataFrame(R_mass.results.rmsd,
columns=['Frame',

'Time (ns)',
'C-alphas', 'CORE',
'LID', 'NMP'])

ax_mass = df_mass.plot(x='Frame',
y=['C-alphas', 'CORE', 'LID', 'NMP'])

ax_mass.set_ylabel('Mass-weighted RMSD ($\AA$)')

[12]: Text(0, 0.5, 'Mass-weighted RMSD ($\\AA$)')
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Custom weights

You can also pass in an array of values for the weights. This must have the same length as the number of atoms in
your selection groups. In this example, we pass in arrays of residue numbers. This is not a typical weighting you
might choose, but we use it here to show how you can get different results to the previous graphs for mass-weighted
and non-weighted RMSD. You could choose to pass in an array of charges, or your own custom value.

First we select the atom groups to make this easier.

[13]: ag = u.select_atoms('protein and name CA')
print('Shape of C-alpha charges:', ag.charges.shape)
core = u.select_atoms(CORE)
lid = u.select_atoms(LID)
nmp = u.select_atoms(NMP)

Shape of C-alpha charges: (214,)

Below, we pass in weights for ag with the weights keyword, and weights for the groupselections with the
weights_groupselections keyword.

[14]: R_charge = rms.RMSD(u, u,
select='protein and name CA',
groupselections=[CORE, LID, NMP],
weights=ag.resids,
weights_groupselections=[core.resids,

lid.resids,
nmp.resids])

R_charge.run()

[14]: <MDAnalysis.analysis.rms.RMSD at 0x7f2e80483490>

You can see in the below graph that the NMP domain has much higher RMSD than before, as each particle is weighted
by its residue number. Conversely, the CORE domain doesn’t really change much. We could potentially infer from this
that residues later in the NMP domain (with a higher residue number) are mobile during the length of the trajectory,
whereas residues later in the CORE domain do not seem to contribute significantly to the RMSD.

However, again, this is a very non-conventional metric and is shown here simply to demonstrate how to use the code.

[15]: df_charge = pd.DataFrame(R_charge.results.rmsd,
columns=['Frame',

'Time (ns)',
'C-alphas', 'CORE',
'LID', 'NMP'])

ax_charge = df_charge.plot(x='Frame',
y=['C-alphas', 'CORE', 'LID', 'NMP'])

ax_charge.set_ylabel('Charge-weighted RMSD ($\AA$)')

[15]: Text(0, 0.5, 'Charge-weighted RMSD ($\\AA$)')
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Calculating the pairwise RMSD of a trajectory

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• matplotlib

See also
• 1D RMSD

• RMSF

Note
MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite ([The05]) when using
the MDAnalysis.analysis.align module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, CRD, DCD2
from MDAnalysis.analysis import diffusionmap, align, rms
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectories sample a transition from a closed to an open conformation.

[2]: adk_open = mda.Universe(CRD, DCD2)
adk_closed = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"
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Background

While 1-dimensional RMSD is a quick way to estimate how much a structure changes over time, it can be a misleading
measure. It is easy to think that two structures with the same RMSD from a reference frame are also similar; but in
fact, they can be very different. Instead, calculating the RMSD of each frame in the trajectory to all other frames in
the other trajectory can contain much more information. This measure is often called the pairwise, all-to-all, or 2D
RMSD.

The other, or reference, trajectory in pairwise RMSD can either be the first trajectory, or another one. If the pairwise
RMSD of a trajectory is calculated to itself, it can be used to gain insight into the conformational convergence of the
simulation. The diagonal of the plot will be zero in this case (as this represents the RMSD of a structure to itself).
Blocks of low RMSD values along the diagonal indicate similar structures, suggesting the occupation of a given state.
Blocks of low RMSD values off the diagonal indicate that the trajectory is revisiting an earlier state. Please see the living
guide Best Practices for Quantification of Uncertainty and Sampling Quality in Molecular Simulations by Grossfield et
al. for more on using 2D RMSD as a measure of convergence. MDAnalysis provides a DistanceMatrix class for easy
calculation of the pairwise RMSD of a trajectory to itself.

When the other trajectory in pairwise RMSD is a different trajectory, the pairwise RMSD can be used to compare the
similarity of the two conformational ensembles. There is no requirement that the two trajectories be the same length.
In this case, the diagonal is no longer necessarily zero. Blocks of low RMSD values anywhere indicate that the two
trajectories are sampling similar states. Pairwise RMSDs with different trajectories must be manually calculated in
MDAnalysis.

Pairwise RMSD of a trajectory to itself

In order to calculate the pairwise RMSD of a trajectory to itself, you should begin by aligning the trajectory in order to
minimise the resulting RMSD. You may not have enough memory to do this in_memory, in which case you can write
out the aligned trajectory to a file (please see the aligning tutorials for more).

[3]: aligner = align.AlignTraj(adk_open, adk_open, select='name CA',
in_memory=True).run()

We can then calculate a pairwise RMSD matrix with the diffusionmap.DistanceMatrix class, by using the default the
rms.rmsd metric.

[4]: matrix = diffusionmap.DistanceMatrix(adk_open, select='name CA').run()

The results array is in results.matrix.dist_matrix as a square array with the shape (#n_frames, #n_frame).

[5]: matrix.results.dist_matrix.shape

[5]: (102, 102)

We can use the common plotting package matplotlib to create a heatmap from this array. For other ways to plot heat
maps, you can look at the seaborn, plotly (for interactive images), or holoviews (also interactive) packages.

[6]: plt.imshow(matrix.results.dist_matrix, cmap='viridis')
plt.xlabel('Frame')
plt.ylabel('Frame')
plt.colorbar(label=r'RMSD ($\AA$)')

[6]: <matplotlib.colorbar.Colorbar at 0x7fd0e5ddcc40>
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Pairwise RMSD between two trajectories

Calculating the 2D RMSD between two trajectories is a bit more finicky; DistanceMatrix can only calculate the
RMSD of a trajectory to itself. Instead, we do it the long way by simply calculating the RMSD of each frame in the
second trajectory, to each frame in the first trajectory.

First we set up a 2D numpy array a shape corresponding to the length of each of our trajectories to store our results. To
start off, it is populated with zeros.

[7]: prmsd = np.zeros((len(adk_open.trajectory), # y-axis
len(adk_closed.trajectory))) # x-axis

Then we iterate through each frame of the adk_open trajectory (our y-axis), and calculate the RMSD of adk_closed
to each frame, storing it in the prmsd array.

[8]: for i, frame_open in enumerate(adk_open.trajectory):
r = rms.RMSD(adk_closed, adk_open, select='name CA',

ref_frame=i).run()
prmsd[i] = r.results.rmsd[:, -1] # select 3rd column with RMSD values

We plot it below. As you can see, there is no longer a line of zero values across the diagonal. Here, the frames of
adk_closed and adk_open are similar but not identical.
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[9]: plt.imshow(prmsd, cmap='viridis')
plt.xlabel('Frame (adk_closed)')
plt.ylabel('Frame (adk_open)')
plt.colorbar(label=r'RMSD ($\AA$)')

[9]: <matplotlib.colorbar.Colorbar at 0x7fd0e5c7a850>
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iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

Calculating the root mean square fluctuation over a trajectory

We calculate the RMSF of the alpha-carbons in adenylate kinase (AdK) as it transitions from an open to closed structure,
with reference to the average conformation of AdK.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisData

• matplotlib

Optional packages for visualisation: * nglview

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

See also
• RMSD

• Pairwise (2D) RMSD

Note
MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that min-
imises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align
and MDAnalysis.analysis.rms modules in published work.

[1]: import MDAnalysis as mda
from MDAnalysisData import datasets
from MDAnalysis.analysis import rms, align
# import nglview as nv

import warnings
# suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here are an equilibrium trajectory of adenylate kinase (AdK), a phosophotrans-
ferase enzyme. ([SB17]) AdK has three domains:

• CORE

• LID: an ATP-binding domain

• NMP: an AMP-binding domain
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The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed
conformations. We therefore might wonder whether the LID and NMP residues are more mobile than the CORE
residues. One way to quantify this flexibility is by calculating the root mean square fluctuation (RMSF) of atomic
positions.

Note: downloading these datasets from MDAnalysisData may take some time.

[2]: adk = datasets.fetch_adk_equilibrium()

[3]: u = mda.Universe(adk.topology, adk.trajectory)

Background

The root-mean-square-fluctuation (RMSF) of a structure is the time average of the RMSD. It is calculated according to
the below equation, where x𝑖 is the coordinates of particle 𝑖, and ⟨x𝑖⟩ is the ensemble average position of 𝑖.

𝜌𝑖 =
√︀
⟨(x𝑖 − ⟨x𝑖⟩)2⟩

Where the RMSD quantifies how much a structure diverges from a reference over time, the RSMF can reveal which
areas of the system are the most mobile. While RMSD is frequently calculated to an initial state, the RMSF should
be calculated to an average structure of the simulation. An area of the structure with high RMSF values frequently
diverges from the average, indicating high mobility. When RMSF analysis is carried out on proteins, it is typically
restricted to backbone or alpha-carbon atoms; these are more characteristic of conformational changes than the more
flexible side-chains.

Creating an average structure

We can generate an average structure to align to with the align.AverageStructure class. Here we first align to the
first frame (ref_frame=0), and then average the coordinates.

[4]: average = align.AverageStructure(u, u, select='protein and name CA',
ref_frame=0).run()

ref = average.results.universe

Aligning the trajectory to a reference

rms.RMSF does not allow on-the-fly alignment to a reference, and presumes that you have already aligned the trajectory.
Therefore we need to first align our trajectory to the average conformation.

[5]: aligner = align.AlignTraj(u, ref,
select='protein and name CA',
in_memory=True).run()

You may not have enough memory to load the trajectory into memory. In that case, save this aligned trajectory to a file
and re-load it into MDAnalysis by uncommenting the code below.

[6]: # aligner = align.AlignTraj(u, ref,
# select='protein and name CA',
# filename='aligned_traj.dcd',
# in_memory=False).run()
# u = mda.Universe(PSF, 'aligned_traj.dcd')
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Calculating RMSF

The trajectory is now fitted to the reference, and the RMSF (API docs) can be calculated.

Note
MDAnalysis implements an algorithm that computes sums of squares and avoids underflows or overflows. Please cite
([Wel62]) when using the MDAnalysis.analysis.rms.RMSF class in published work.

[7]: c_alphas = u.select_atoms('protein and name CA')
R = rms.RMSF(c_alphas).run()

Plotting RMSF

We can now plot the RMSF using the common plotting package matplotlib.

[8]: import matplotlib.pyplot as plt
%matplotlib inline

As we can see, the LID and NMP residues indeed move much more compared to the rest of the enzyme.

[9]: plt.plot(c_alphas.resids, R.results.rmsf)
plt.xlabel('Residue number')
plt.ylabel('RMSF ($\AA$)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[9]: <matplotlib.legend.Legend at 0x13a476d30>
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Visualising RMSF as B-factors

Colouring a protein by RMSF allows you to visually identify regions of high fluctuation. This is commonly done by
setting temperature factor (also known as b-factor) values, writing out to a format with B-factor specification (e.g.
PDB), and visualising the file in a program such as VMD or nglview.

MDAnalysis uses the tempfactor topology attribute for this information. Below, we iterate through each residue of
the protein and set the tempfactor attribute for every atom in the residue to the alpha-carbon RMSF value; this is
necessary so every atom in the residue is coloured with the alpha-carbon RMSF.

[10]: u.add_TopologyAttr('tempfactors') # add empty attribute for all atoms
protein = u.select_atoms('protein') # select protein atoms
for residue, r_value in zip(protein.residues, R.results.rmsf):

residue.atoms.tempfactors = r_value

Below we visualise these values with a rainbow colour scheme. Purple values correspond to low RMSF values, whereas
red values correspond to high RMSFs.

[11]: # view = nv.show_mdanalysis(u)
# view.update_representation(color_scheme='bfactor')
# view

[12]: # from nglview.contrib.movie import MovieMaker
# movie = MovieMaker(

(continues on next page)
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(continued from previous page)

# view,
# step=100, # keep every 100th frame
# output='images/rmsf-view.gif',
# render_params={"factor": 3}, # set to 4 for highest quality
# )
# movie.make()

You can also write the atoms to a file and visualise it in another program. As the original Universe did not contain
altLocs, icodes or occupancies for each atom, some warnings will be printed (which are not visible here).

[13]: u.atoms.write('rmsf_tempfactors.pdb')
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Distances and contacts

The MDAnalysis.analysis.distances module provides functions to rapidly compute distances. These largely take
in coordinate arrays.
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Atom-wise distances between matching AtomGroups

Here we compare the distances between alpha-carbons of the enzyme adenylate kinase in its open and closed confor-
mations. distances.dist can be used to calculate distances between atom groups with the same number of atoms
within them.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small, PDB_closed
from MDAnalysis.analysis import distances

import matplotlib.pyplot as plt
%matplotlib inline

import warnings
# suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
AdK has three domains:

• CORE

• LID: an ATP-binding domain (residues 122-159)

• NMP: an AMP-binding domain (residues 30-59)

The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed
conformations.

[2]: u1 = mda.Universe(PDB_small) # open AdK
u2 = mda.Universe(PDB_closed) # closed AdK
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Calculating the distance between CA atoms

We select the atoms named ‘CA’ of each Universe.

[3]: ca1 = u1.select_atoms('name CA')
ca2 = u2.select_atoms('name CA')

distances.dist(API docs) returns the residue numbers of both selections given. The offset keyword adds an offset
to these residue numbers to help with comparison to each other and other file formats. Here we are happy with our
residue numbers, so we use the default offset of 0. (See the documentation of distances.dist for more information.)

[4]: resids1, resids2, dist = distances.dist(ca1, ca2,
offset=0) # for residue numbers

Plotting

Below, we plot the distance over the residue numbers and highlight the LID and NMP domains of the protein. The LID
domain in particular moves a significant distance between its opened and closed conformations.

[8]: plt.plot(resids1, dist)
plt.ylabel('Ca distance (Angstrom)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[8]: <matplotlib.legend.Legend at 0x7f06d2a3b7c0>
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Calculating the distance with periodic boundary conditions

It is common to want to calculate distances with the minimum image convention. To do this, you must pass the unitcell
dimensions of the system to the box keyword, even if your Universe has dimensions defined.

This should have the format: [lx, ly, lz, alpha, beta, gamma], where the first three numbers are the box
lengths along each axis and the last three are the angles of the box.

[6]: resids1_box, resids2_box, dist_box = distances.dist(ca1, ca2,
box=[10, 10, 10, 90, 90, 90])

Plotting

[7]: plt.plot(resids1_box, dist_box)
plt.ylabel('Ca distance (Angstrom)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[7]: <matplotlib.legend.Legend at 0x7f06d09bc700>
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All distances between two selections

Here we use distances.distance_array to quantify the distances between each atom of a target set to each atom in
a reference set, and show how we can extend that to calculating the distances between the centers-of-mass of residues.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
from MDAnalysis.analysis import distances

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import warnings
# suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')
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Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
AdK has three domains:

• CORE

• LID: an ATP-binding domain (residues 122-159)

• NMP: an AMP-binding domain (residues 30-59)

[2]: u = mda.Universe(PDB_small) # open AdK

Calculating atom-to-atom distances between non-matching coordinate arrays

We select the alpha-carbon atoms of each domain.

[3]: LID_ca = u.select_atoms('name CA and resid 122-159')
NMP_ca = u.select_atoms('name CA and resid 30-59')

n_LID = len(LID_ca)
n_NMP = len(NMP_ca)
print('LID has {} residues and NMP has {} residues'.format(n_LID, n_NMP))

LID has 38 residues and NMP has 30 residues

distances.distance_array(API docs) will produce an array with shape (n, m) distances if there are n positions in
the reference array and m positions in the other configuration. If you want to calculate distances following the minimum
image convention, you must pass the universe dimensions into the box keyword.

[4]: dist_arr = distances.distance_array(LID_ca.positions, # reference
NMP_ca.positions, # configuration
box=u.dimensions)

dist_arr.shape

[4]: (38, 30)

Plotting distance as a heatmap

[5]: fig, ax = plt.subplots()
im = ax.imshow(dist_arr, origin='upper')

# add residue ID labels to axes
tick_interval = 5
ax.set_yticks(np.arange(n_LID)[::tick_interval])
ax.set_xticks(np.arange(n_NMP)[::tick_interval])
ax.set_yticklabels(LID_ca.resids[::tick_interval])
ax.set_xticklabels(NMP_ca.resids[::tick_interval])

# add figure labels and titles
plt.ylabel('LID')
plt.xlabel('NMP')
plt.title('Distance between alpha-carbon')

(continues on next page)
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(continued from previous page)

# colorbar
cbar = fig.colorbar(im)
cbar.ax.set_ylabel('Distance (Angstrom)')

[5]: Text(0, 0.5, 'Distance (Angstrom)')

Calculating residue-to-residue distances

As distances.distance_array just takes coordinate arrays as input, it is very flexible in calculating distances
between each atom, or centers-of-masses, centers-of-geometries, and so on.

Instead of calculating the distance between the alpha-carbon of each residue, we could look at the distances between
the centers-of-mass instead. The process is very similar to the atom-wise distances above, but we give distances.
distance_array an array of residue center-of-mass coordinates instead.

[6]: LID = u.select_atoms('resid 122-159')
NMP = u.select_atoms('resid 30-59')

LID_com = LID.center_of_mass(compound='residues')
NMP_com = NMP.center_of_mass(compound='residues')

n_LID = len(LID_com)
(continues on next page)
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n_NMP = len(NMP_com)

print('LID has {} residues and NMP has {} residues'.format(n_LID, n_NMP))

LID has 38 residues and NMP has 30 residues

We can pass these center-of-mass arrays directly into distances.distance_array.

[7]: res_dist = distances.distance_array(LID_com, NMP_com,
box=u.dimensions)

Plotting

[8]: fig2, ax2 = plt.subplots()
im2 = ax2.imshow(res_dist, origin='upper')

# add residue ID labels to axes
tick_interval = 5
ax2.set_yticks(np.arange(n_LID)[::tick_interval])
ax2.set_xticks(np.arange(n_NMP)[::tick_interval])
ax2.set_yticklabels(LID.residues.resids[::tick_interval])
ax2.set_xticklabels(NMP.residues.resids[::tick_interval])

# add figure labels and titles
plt.ylabel('LID')
plt.xlabel('NMP')
plt.title('Distance between center-of-mass')

# colorbar
cbar2 = fig2.colorbar(im)
cbar2.ax.set_ylabel('Distance (Angstrom)')

[8]: Text(0, 0.5, 'Distance (Angstrom)')
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All distances within a selection

Here we calculate the distance of every atom to every other atom in a selection, and show how we can extend this to
residues.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
from MDAnalysis.analysis import distances

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import warnings
# suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u = mda.Universe(PDB_small)

Calculating atom-wise distances

We begin by selecting the alpha-carbons of the protein.

[3]: ca = u.select_atoms('name CA')
n_ca = len(ca)
n_ca

[3]: 214

When given an array with 𝑛 positions, distances.self_distance_array (API docs) returns the distances in a flat
vector with length 𝑛(𝑛−1)

2 . These correspond to the flattened upper triangular values of a square distance matrix.

[4]: self_distances = distances.self_distance_array(ca.positions)
self_distances.shape

[4]: (22791,)
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We can convert this into a more easily interpreted square distance array. First we create an all-zero square array and
get the indices of the upper and lower triangular matrices.

[5]: sq_dist_arr = np.zeros((n_ca, n_ca))
triu = np.triu_indices_from(sq_dist_arr, k=1)

Then we simply assign the calculated distances to the upper and lower triangular positions.

[6]: sq_dist_arr[triu] = self_distances
sq_dist_arr.T[triu] = self_distances

Plotting

[7]: fig, ax = plt.subplots()
im = ax.pcolor(ca.resids, ca.resids, sq_dist_arr)

# plt.pcolor gives a rectangular grid by default
# so we need to make our heatmap square
ax.set_aspect('equal')

# add figure labels and titles
plt.ylabel('Residue IDs')
plt.xlabel('Residue IDs')
plt.title('Distance between alpha-carbons in AdK')

# colorbar
cbar = fig.colorbar(im)
cbar.ax.set_ylabel('Distance (Angstrom)')

[7]: Text(0, 0.5, 'Distance (Angstrom)')
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Calculating distances for each residue

Instead of calculating the distance between the alpha-carbon of each residue, we could look at the distances between the
centers-of-mass instead. The process is very similar to the atom-wise distances above, but we have to pass distances.
self_distance_array an array of residue center-of-mass coordinates instead.

[8]: res_com = u.atoms.center_of_mass(compound='residues')
n_res = len(res_com)
n_res

[8]: 214

As the number of residues remains the same, the resulting distances array has the same length.

[9]: res_dist = distances.self_distance_array(res_com)
res_dist.shape

[9]: (22791,)

This means we don’t need to re-define triu.

[10]: sq_dist_res = np.zeros((n_res, n_res))
sq_dist_res[triu] = res_dist
sq_dist_res.T[triu] = res_dist
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Plotting

The resulting plot looks pretty similar.

[11]: fig2, ax2 = plt.subplots()
im2 = ax2.pcolor(u.residues.resids, u.residues.resids, sq_dist_res)

# plt.pcolor gives a rectangular grid by default
# so we need to make our heatmap square
ax2.set_aspect('equal')

# add figure labels and titles
plt.ylabel('Residue IDs')
plt.xlabel('Residue IDs')
plt.title('Distance between centers-of-mass of AdK residues')

# colorbar
cbar2 = fig2.colorbar(im2)
cbar2.ax.set_ylabel('Distance (Angstrom)')

[11]: Text(0, 0.5, 'Distance (Angstrom)')
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Residues can be determined to be in contact if atoms from the two residues are within a certain distance. Analysing the
fraction of contacts retained by a protein over at trajectory, as compared to the number of contacts in a reference frame
or structure, can give insight into folding processes and domain movements.

MDAnalysis.analysis.contacts contains functions and a class to analyse the fraction of native contacts over a
trajectory.

Fraction of native contacts over a trajectory

Here, we calculate the native contacts of a trajectory as a fraction of the native contacts in a given reference.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• matplotlib

• pandas

Optional packages for molecular visualisation: * nglview

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

See also
• Contact analysis: number of contacts within a cutoff (all contacts within a cutoff)

• Write your own contacts analysis method

• Q1 vs Q2 contact analysis

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

# import nglview as nv
(continues on next page)
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import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

/Users/lily/pydev/mdanalysis/package/MDAnalysis/coordinates/DCD.py:165:␣
→˓DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts␣
→˓while other readers update self.ts inplace. This behavior will be changed in 3.0 to be␣
→˓the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/
→˓issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Background

Residues can be determined to be in contact if atoms from the two residues are within a certain distance. Native contacts
are those contacts that exist within a native state, as opposed to non-native contacts, which are formed along the path to
a folded state or during the transition between two conformational states. MDAnalysis defines native contacts as those
present in the reference structure (refgroup) given to the analysis.

Proteins often have more than one native state. Calculating the fraction of native contacts within a protein over a sim-
ulation can give insight into transitions between states, or into folding and unfolding processes. MDAnalysis supports
three metrics for determining contacts:

• Hard distance cutoff (hard_cut_q)

• Radius cutoff (radius_cut_q) ([FKDD07])

• Soft potential-based cutoff (soft_cut_q) ([BHE13])

Please see the API documentation for the Contacts class for more information.

Defining the groups for contact analysis

For the purposes of this tutorial, we define pseudo-salt bridges as contacts. A more appropriate quantity for studying
the transition between two protein conformations may be the contacts formed by alpha-carbon atoms, as this will give
us insight into the movements of the protein in terms of the secondary and tertiary structure. The Q1 vs Q2 contact
analysis demonstrates an example using the alpha-carbon atoms.

[3]: sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)
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Hard cutoff with a single reference

The 'hard_cut' or hard_cut_q() method uses a hard cutoff for determining native contacts. Two residues are in
contact if the distance between them is lower than or equal to the distance in the reference structure.

Below, we use the atomgroups in the universe at the current frame as a reference.

[4]: ca1 = contacts.Contacts(u,
select=(sel_acidic, sel_basic),
refgroup=(acidic, basic),
radius=4.5,
method='hard_cut').run()

The results are available as a numpy array at ca1.timeseries. The first column is the frame, and the second is the
fraction of contacts present in that frame.

[5]: ca1_df = pd.DataFrame(ca1.results.timeseries,
columns=['Frame',

'Contacts from first frame'])
ca1_df.head()

[5]: Frame Contacts from first frame
0 0.0 1.000000
1 1.0 0.492754
2 2.0 0.449275
3 3.0 0.507246
4 4.0 0.463768

Note that the data is presented as fractions of the native contacts present in the reference configuration. In order to find
the number of contacts present, multiply the data with the number of contacts in the reference configuration. Initial
contact matrices are saved as pairwise arrays in ca1.initial_contacts.

[6]: ca1.initial_contacts[0].shape

[6]: (70, 44)

You can sum this to work out the number of contacts in your reference, and apply that to the fractions of references in
your timeseries data.

[7]: n_ref = ca1.initial_contacts[0].sum()
print('There are {} contacts in the reference.'.format(n_ref))

There are 69 contacts in the reference.

[8]: n_contacts = ca1.results.timeseries[:, 1] * n_ref
print(n_contacts[:5])

[69. 34. 31. 35. 32.]
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Plotting

You can plot directly from the dataframe, or use other tools such as seaborn. In this trajectory, the fraction of native
contats drops immediately to under 50%, and fluctuates around 40% for the rest of the simulation. This means that the
protein retains a structure where around 40% salt bridges in the reference remain within the distance of the reference.
However, it is difficult to infer information on domain rearrangements and other large-scale movement, other than that
the the protein never returns to a similar state as the initial frame.

[9]: ca1_df.plot(x='Frame')
plt.ylabel('Fraction of contacts')
plt.show()

Radius cutoff

Another metric that MDAnalysis supports is determining residues to be in contact if they are within a certain radius.
This is similar to the hard cutoff metric, in that there is no potential. The difference is that a single radius is used as the
cutoff for all contacts, rather than the distance between the residues in the reference. For a tutorial on similar contact
analysis of residues within a cutoff, see Number of contacts within cutoff . That tutorial is for calculating the overall
number or fraction of contacts, instead of the fraction of native contacts.

You can choose this method by passing in the method name 'radius_cut', which uses the radius_cut_q(). The
radius keyword specifies the distance used in ångström. No other arguments need to passed into kwargs.

[10]: ca2 = contacts.Contacts(u, select=(sel_acidic, sel_basic),
refgroup=(acidic, basic),

(continues on next page)
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radius=4.5,
method='radius_cut').run()

Plotting

Again, we can plot over time. We can see that the fraction of native contacts from the first frame has a very different
shape for the radius_cut method vs the hard_cut method. While the hard_cut metric tells us that >50% the
native contacts never have equal or lower distance during the trajectory, as compared to the reference, the radius_cut
analysis shows us that the fraction of contacts within 4.5 Å decreases gradually to 75% over the trajectory. We can infer
that almost half the native contacts in the reference frame were closer than 4.5 Å. Moreover, the continuous decrease
suggests that the protein may be unfolding, or a large-scale changes in conformation are occurring in such a way that
the native salt bridges are not preserved or re-formed.

[11]: ca2_df = pd.DataFrame(ca2.results.timeseries,
columns=['Frame', 'Contacts from first frame'])

ca2_df.plot(x='Frame')
plt.ylabel('Fraction of contacts')
plt.show()
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Soft cutoff and multiple references

Multiple references

refgroup can either be two contacting groups in a reference configuration, or a list of tuples of two contacting groups.

Below we want to look at native contacts from the first frame, and the last frame. To do this, we create a new universe
called refwith the same files (and therefore same data) as u. We need to do this so that the (acidic, basic) selections
from u, which are assigned from the first frame, remain unchanged. ref is a different Universe so when we set it to its
last frame (with index -1), it does not affect u or the previous selections. Now, when we re-select the atomgroups from
ref with the selection string used in the hard-cutoff section, different contacts are selected to the contacts found in the
first frame of u.

[12]: ref = mda.Universe(PSF, DCD)

ref.trajectory[-1]
acidic_2 = ref.select_atoms(sel_acidic)
basic_2 = ref.select_atoms(sel_basic)

/Users/lily/pydev/mdanalysis/package/MDAnalysis/coordinates/DCD.py:165:␣
→˓DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts␣
→˓while other readers update self.ts inplace. This behavior will be changed in 3.0 to be␣
→˓the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/
→˓issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Soft cutoff

This time we will use the soft_cut_q algorithm to calculate contacts by setting method='soft_cut'. This method
uses the soft potential below to determine if atoms are in contact:

𝑄(𝑟, 𝑟0) =
1

1 + 𝑒𝛽(𝑟−𝜆𝑟0)

𝑟 is a distance array and 𝑟0 are the distances in the reference group. 𝛽 controls the softness of the switching function
and 𝜆 is the tolerance of the reference distance.

Suggested values for 𝜆 is 1.8 for all-atom simulations and 1.5 for coarse-grained simulations. The default value of 𝛽 is
5.0. To change these, pass kwargs to contacts.Contacts. We also pass in the contacts from the first frame ((acidic,
basic)) and the last frame ((acidic_2, basic_2)) as two separate reference groups. This allows us to calculate
the fraction of native contacts in the first frame and the fraction of native contacts in the last frame simultaneously.

[13]: ca3 = contacts.Contacts(u, select=(sel_acidic, sel_basic),
refgroup=[(acidic, basic), (acidic_2, basic_2)],
radius=4.5,
method='soft_cut',
kwargs={'beta': 5.0,

'lambda_constant': 1.5}).run()

Again, the first column of the data array in ca2.timeseries is the frame. The next columns of the array are fractions
of native contacts with reference to the refgroups passed, in order.

[14]: ca3_df = pd.DataFrame(ca3.results.timeseries,
columns=['Frame',

(continues on next page)
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'Contacts from first frame',
'Contacts from last frame'])

ca3_df.head()

[14]: Frame Contacts from first frame Contacts from last frame
0 0.0 0.999094 0.719242
1 1.0 0.984928 0.767501
2 2.0 0.984544 0.788027
3 3.0 0.970184 0.829219
4 4.0 0.980425 0.833500

Plotting

Again, we can see that the fraction of native contacts from the first frame has a very different shape for the soft_cut
method vs the other methods. Like the radius_cut method, a gradual decrease in salt bridges is visible; unlike that
plot, however, more than 80% native contacts are counted by 100 frames using this metric. By itself, this analysis might
suggest that the protein is unfolding.

More interesting is the fraction of native contacts from the last frame, which rises from ~70% to 100% over the simula-
tion. This rise indicates that the protein is not unfolding, per se (where contacts from the last frame would be expected
to rise much less); but instead, a rearrangement of the domains is occurring, where new contacts are formed in the final
state.

[15]: ca3_df.plot(x='Frame')
plt.show()
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Indeed, viewing the trajectory shows us that the enzyme transitions from a closed to open state.

[16]: u.trajectory[0] # set trajectory to first frame (closed)
# make a new Universe with coordinates of first frame
adk_closed = mda.Merge(u.atoms).load_new(u.atoms.positions)

[17]: # adk_closed_view = nv.show_mdanalysis(adk_closed)
# adk_closed_view

[18]: u.trajectory[-1] # set trajectory to last frame (open)
# make a new Universe with coordinates of last frame
adk_open = mda.Merge(u.atoms).load_new(u.atoms.positions)
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[19]: # adk_open_view = nv.show_mdanalysis(adk_open)
# adk_open_view

We can also plot the fraction of salt bridges from the first frame, over the fraction from the last frame, as a way to
characterise the transition of the protein from closed to open.

[20]: ca3_df.plot(x='Contacts from first frame',
y='Contacts from last frame',
legend=False)

plt.ylabel('Contacts from last frame')
plt.show()
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Q1 vs Q2 contact analysis

Here we calculate a Q1 vs Q2 plot, where Q1 refers to fraction of native contacts along a trajectory with reference to
the first frame, and Q2 represents the fraction of native contacts with reference to the last.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• matplotlib

• pandas

See also
• Fraction of native contacts over a trajectory

• Write your own contacts analysis method

• Contact analysis: number of contacts within a cutoff

Note
The contacts.q1q2 function uses the radius_cut_q method to calculate the fraction of native contacts for a con-
formation by determining that atoms i and j are in contact if they are within a given radius ([FKDD07], [BHE13])
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[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Background

Please see the Fraction of native contacts for an introduction to general native contacts analysis.

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Calculating Q1 vs Q2

We choose to calculate contacts for all the alpha-carbons in the protein, and define the contact radius cutoff at 8
Angstrom. contacts.q1q2 returns a contacts.Contacts object, which we can run directly.

[3]: q1q2 = contacts.q1q2(u, 'name CA', radius=8).run()

The data is in q1q2.timeseries. The first column of the data is always the frame number.

[4]: q1q2_df = pd.DataFrame(q1q2.results.timeseries,
columns=['Frame',

'Q1',
'Q2'])

q1q2_df.head()

[4]: Frame Q1 Q2
0 0.0 1.000000 0.946494
1 1.0 0.980926 0.949262
2 2.0 0.973660 0.952952
3 3.0 0.972752 0.951107
4 4.0 0.970027 0.948339
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Plotting

We can plot the fraction of native contacts over time.

[5]: q1q2_df.plot(x='Frame')
plt.ylabel('Fraction of native contacts')

[5]: Text(0, 0.5, 'Fraction of native contacts')

Alternatively, we can create a Q1 vs Q2 plot to characterise the transition of AdK from its opened to closed position.

[6]: q1q2_df.plot(x='Q1', y='Q2', legend=False)
plt.ylabel('Q2')

[6]: Text(0, 0.5, 'Q2')
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Contact analysis: number of contacts within a cutoff

We calculate the number of salt bridges in an enzyme as it transitions from a closed to an open conformation.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• matplotlib

• pandas

See also
• Write your own contacts analysis method

• Q1 vs Q2 contact analysis

• Fraction of native contacts over a trajectory

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Background

Quantifying the number of contacts over a trajectory can give insight into the formation and rearrangements of sec-
ondary and tertiary structure. This is closely related to native contacts analysis; where the fraction of native contacts
refers to the fraction of contacts retained by a protein from the contacts in a reference frame, the number of contacts
simply counts how many residues are within a certain cutoff for each frame. No reference is necessary. Please see the
Fraction of native contacts for an introduction to native contacts analysis.

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"
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Defining the groups for contact analysis

We define salt bridges as contacts between NH/NZ in ARG/LYS and OE*/OD* in ASP/GLU. It is not recommend to
use this overly simplistic definition for real work that you want to publish.

[3]: sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Calculating number of contacts within a cutoff

Below, we define a function that calculates the number of contacts between group_a and group_b within the radius
cutoff, for each frame in a trajectory.

[4]: def contacts_within_cutoff(u, group_a, group_b, radius=4.5):
timeseries = []
for ts in u.trajectory:

# calculate distances between group_a and group_b
dist = contacts.distance_array(group_a.positions, group_b.positions)
# determine which distances <= radius
n_contacts = contacts.contact_matrix(dist, radius).sum()
timeseries.append([ts.frame, n_contacts])

return np.array(timeseries)

The results are returned as a numpy array. The first column is the frame, and the second is the number of contacts
present in that frame.

[5]: ca = contacts_within_cutoff(u, acidic, basic, radius=4.5)
ca.shape

[5]: (98, 2)

[6]: ca_df = pd.DataFrame(ca, columns=['Frame',
'# Contacts'])

ca_df.head()

[6]: Frame # Contacts
0 0 69
1 1 73
2 2 77
3 3 77
4 4 85
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Plotting

[7]: ca_df.plot(x='Frame')
plt.ylabel('# salt bridges')

[7]: Text(0, 0.5, '# salt bridges')
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Write your own native contacts analysis method

The contacts.Contacts class has been designed to be extensible for your own analysis. Here we demonstrate how
to define a new method to use to determine the fraction of native contacts.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• matplotlib

• pandas

See also
• Fraction of native contacts over a trajectory (pre-defined metrics and a general introduction to native contacts

analysis)

• Q1 vs Q2 contact analysis

• Contact analysis: number of contacts within a cutoff

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"
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Background

Please see the Fraction of native contacts for an introduction to general native contacts analysis.

Defining salt bridges

We define salt bridges as contacts between NH/NZ in ARG/LYS and OE*/OD* in ASP/GLU. You may not want to use
this definition for real work.

[3]: sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Define your own function

Any function you define must have r and r0 as its first and second arguments respectively, even if you don’t necessarily
use them:

• r: an array of distances between atoms at the current time

• r0: an array of distances between atoms in the reference

You can then define following arguments as keyword arguments.

In the function below, we calculate the fraction of native contacts that are less than radius, but greater than
min_radius.

[4]: def fraction_contacts_between(r, r0, radius=3.4, min_radius=2.5):
is_in_contact = (r < radius) & (r > min_radius) # array of bools
fraction = is_in_contact.sum()/r.size
return fraction

Then we pass fraction_contacts_between to the contacts.Contacts class. Keyword arguments for our custom
function must be in the kwargs dictionary. Even though we define a radius keyword in my custom analysis function,
it is not automatically passed from contacts.Contacts. We have to make sure that it is in kwargs.

[5]: ca = contacts.Contacts(u,
select=(sel_acidic, sel_basic),
refgroup=(acidic, basic),
method=fraction_contacts_between,
radius=5.0,
kwargs={'radius': 5.0,

'min_radius': 2.4}).run()

One easy way to post-process results is to turn them into a dataframe.

[6]: ca_df = pd.DataFrame(ca.results.timeseries,
columns=['Frame',

'Contacts from first frame'])
ca_df.head()
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[6]: Frame Contacts from first frame
0 0.0 1.000000
1 1.0 0.988764
2 2.0 0.943820
3 3.0 0.943820
4 4.0 0.943820

Plotting

We can plot directly from a dataframe (below), or you could use it with other plotting packags such as seaborn.

[7]: ca_df.plot(x='Frame')

[7]: <AxesSubplot: xlabel='Frame'>
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Trajectory similarity

A molecular dynamics trajectory with 𝑁 atoms can be considered through a path through 3𝑁 -dimensional molecu-
lar configuration space. MDAnalysis contains a number of algorithms to compare the conformational ensembles of
different trajectories. Most of these are in the MDAnalysis.analysis.encore module ([TPB+15]) and compare es-
timated probability distributions to measure similarity. The path similarity analysis compares the RMSD between pairs
of structures in conformation transition paths. MDAnalysis.analysis.encore also contains functions for evaluating
the conformational convergence of a trajectory using the similarity over conformation clusters or similarity in a reduced
dimensional space.

Comparing the geometric similarity of trajectories

Here we compare the geometric similarity of trajectories using the following path metrics:

• the Hausdorff distance

• the discrete Fréchet

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 0.18.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

• seaborn

Note
The metrics and methods in the psa path similarity analysis module are from ([SKTB15]). Please cite them when
using the MDAnalysis.analysis.psa module in published work.
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[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS,
PDB_small, CRD)

from MDAnalysis.analysis import psa
import warnings
# suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(GRO, XTC)
u4 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)
u5 = mda.Universe(PDB_small, CRD, PDB_small,

CRD, PDB_small, CRD, PDB_small)

ref = mda.Universe(PDB_small)

labels = ['DCD', 'DCD2', 'XTC', 'NAMD', 'mixed']

The trajectories can have different lengths, as seen below.

[3]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 10

Aligning trajectories

We set up the PSAnalysis (API docs) with our list of Universes and labels. While path_select determines which
atoms to calculate the path similarities for, select determines which atoms to use to align each Universe to reference.

[4]: CORE_sel = 'name CA and (resid 1:29 or resid 60:121 or resid 160:214)'

ps = psa.PSAnalysis([u1, u2, u3, u4, u5],
labels=labels,
reference=ref,
select=CORE_sel,
path_select='name CA')
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Generating paths

For each Universe, we will generate a transition path containing each conformation from a trajectory using
generate_paths (API docs).

First, we will do a mass-weighted alignment of each trajectory to the reference structure reference, along the atoms
in select. To turn off the mass weighting, set weights=None. If your trajectories are already aligned, you can skip
the alignment with align=False.

[5]: ps.generate_paths(align=True, save=False, weights='mass')

Hausdorff method

Now we can compute the similarity of each path. The default metric is to use the Hausdorff method. [5] The Hausdorff
distance between two conformation transition paths 𝑃 and 𝑄 is:

𝛿𝐻(𝑃,𝑄) = max (𝛿ℎ(𝑃 |𝑄), 𝛿ℎ(𝑄|𝑃 ))

𝛿ℎ(𝑃 |𝑄) is the directed Hausdorff distance from 𝑃 to 𝑄, and is defined as:

𝛿ℎ(𝑃 |𝑄) = max
𝑝∈𝑃

min
𝑞∈𝑄

𝑑(𝑝, 𝑞)

The directed Hausdorff distance of 𝑃 to 𝑄 is the distance between the two points, 𝑝 ∈ 𝑃 and its structural nearest
neighbour 𝑞 ∈ 𝑄, for the point 𝑝 where the distance is greatest. This is not commutative, i.e. the directed Hausdorff
distance from 𝑄 to 𝑃 is not the same. (See scipy.spatial.distance.directed_hausdorff for more information).

In MDAnalysis, the Hausdorff distance is the RMSD between a pair of conformations in 𝑃 and 𝑄, where the one of
the conformations in the pair has the least similar nearest neighbour.

[6]: ps.run(metric='hausdorff')

The distance matrix is saved in ps.D.

[7]: ps.D

[7]: array([[ 0. , 1.33312648, 22.37206002, 2.04737477, 7.55204678],
[ 1.33312648, 0. , 22.3991666 , 2.07957562, 7.55032598],
[22.37206002, 22.3991666 , 0. , 22.42282661, 25.74534554],
[ 2.04737477, 2.07957562, 22.42282661, 0. , 7.67052252],
[ 7.55204678, 7.55032598, 25.74534554, 7.67052252, 0. ]])

Plotting

psa.PSAnalysis provides two convenience methods for plotting this data. The first is to plot a heat-map dendro-
gram from clustering the trajectories based on their path similarity. You can use any clustering method supported by
scipy.cluster.hierarchy.linkage; the default is ‘ward’.

[8]: fig = ps.plot(linkage='ward')

<Figure size 640x480 with 0 Axes>
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The other is to plot a heatmap annotated with the distance values. Again, the trajectories are displayed in an arrangement
that fits the clustering method.

Note
You will need to install the data visualisation library Seaborn for this function.

[9]: fig = ps.plot_annotated_heatmap(linkage='single')

<Figure size 640x480 with 0 Axes>
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Discrete Fréchet distances

The discrete Fréchet distance between two conformation transition paths 𝑃 and 𝑄 is:

𝛿𝑑𝐹 (𝑃,𝑄) = min
𝐶∈Γ𝑃,𝑄

‖𝐶‖

where 𝐶 is a coupling in the set of all couplings Γ𝑃,𝑄 between 𝑃 and 𝑄. A coupling 𝐶(𝑃,𝑄) is a sequence of pairs
of conformations in 𝑃 and 𝑄, where the first/last pairs are the first/last points of the respective paths, and for each
successive pair, at least one point in 𝑃 or 𝑄 must advance to the next frame.

𝐶(𝑃,𝑄) ≡ (𝑝𝑎1
, 𝑞𝑏1), (𝑝𝑎2

, 𝑞𝑏2), ..., (𝑝𝑎𝐿
, 𝑞𝑏𝐿)

The coupling distance ‖𝐶‖ is the largest distance between a pair of points in such a sequence.

‖𝐶‖ ≡ max
𝑖=1,...,𝐿

𝑑(𝑝𝑎𝑖
, 𝑞𝑏𝑖)

In MDAnalysis, the discrete Fréchet distance is the lowest possible RMSD between a conformation from 𝑃 and a
conformation from𝑄, where the two frames are at similar points along the trajectory, and they are the least structurally
similar in that particular coupling sequence. [6-9]
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[10]: ps.run(metric='discrete_frechet')
ps.D

[10]: array([[ 0. , 1.33312649, 22.37205967, 2.04737475, 7.55204694],
[ 1.33312649, 0. , 22.39916723, 2.07957565, 7.55032613],
[22.37205967, 22.39916723, 0. , 22.42282569, 25.74534511],
[ 2.04737475, 2.07957565, 22.42282569, 0. , 7.67052241],
[ 7.55204694, 7.55032613, 25.74534511, 7.67052241, 0. ]])

Plotting

[11]: fig = ps.plot(linkage='ward')

<Figure size 640x480 with 0 Axes>

[12]: fig = ps.plot_annotated_heatmap(linkage='single')

<Figure size 640x480 with 0 Axes>
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Calculating the Harmonic Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in four trajectories, using the harmonic ensemble similarity
method.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

Note
The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.
analysis.encore module in published work.

[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS,
PDB_small, CRD)

from MDAnalysis.analysis import encore

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(GRO, XTC)
u4 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'XTC', 'NAMD']

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/
→˓coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent␣
→˓timesteps by copying self.ts while other readers update self.ts inplace. This␣
→˓behaviour will be changed in 3.0 to be the same as other readers
warnings.warn("DCDReader currently makes independent timesteps"
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The trajectories can have different lengths, as seen below.

[3]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 10

Calculating harmonic similarity

The harmonic ensemble similarity method treats the conformational ensemble within each trajectory as a high-
dimensional Gaussian distribution𝑁(𝜇,Σ). The mean 𝜇 is estimated as the average over the ensemble. The covariance
matrix Σ is calculated either using a shrinkage estimator (cov_estimator='shrinkage') or a maximum-likelihood
method (cov_estimator='ml').

The harmonic ensemble similarity is then calculated using the symmetrised version of the Kullback-Leibler divergence.
This has no upper bound, so you can get some very high values for very different ensembles.

The function we will use is encore.hes (API docs here). It is recommended that you align your trajectories before
computing the harmonic similarity. You can either do this yourself with align.AlignTraj, or pass align=True into
encore.hes. The latter option will align each of your Universes to the current timestep of the first Universe. Note that
since encore.hes will pull your trajectories into memory, this changes the positions of your Universes.

[4]: hes, details = encore.hes([u1, u2, u3, u4],
select='backbone',
align=True,
cov_estimator='shrinkage',
weights='mass')

[5]: for row in hes:
for h in row:

print("{:>10.1f}".format(h), end = ' ')
print("")

0.0 24955.7 1879874.5 145622.3
24955.7 0.0 1659867.5 161102.3

1879874.5 1659867.5 0.0 9900092.7
145622.3 161102.3 9900092.7 0.0

The mean and covariance matrices for each Universe are saved in details.

[6]: details["ensemble1_mean"].shape

[6]: (2565,)

Plotting

[7]: fig, ax = plt.subplots()
im = plt.imshow(hes)
plt.xticks(np.arange(4), labels)
plt.yticks(np.arange(4), labels)
plt.title('Harmonic ensemble similarity')
cbar = fig.colorbar(im)

2.1. Communications 107

https://docs.mdanalysis.org/stable/documentation_pages/analysis/encore/similarity.html#MDAnalysis.analysis.encore.similarity.hes


MDAnalysis User Guide

References

[1] R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S.
Buchoux, I. M. Kenney, and O. Beckstein. MDAnalysis: A Python package for the rapid analysis of molecular dynamics
simulations. In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science Conference, pages 98-
105, Austin, TX, 2016. SciPy, doi: 10.25080/majora-629e541a-00e.

[2] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. MDAnalysis: A Toolkit for the Analy-
sis of Molecular Dynamics Simulations. J. Comput. Chem. 32 (2011), 2319-2327, doi:10.1002/jcc.21787. PM-
CID:PMC3144279

[3] ENCORE: Software for Quantitative Ensemble Comparison. Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter
Boomsma, Kresten Lindorff-Larsen. PLoS Comput Biol. 2015, 11, e1004415.

[4] Beckstein O, Denning EJ, Perilla JR, Woolf TB. Zipping and unzipping of adenylate kinase: atomistic insights into
the ensemble of open<–>closed transitions. J Mol Biol. 2009;394(1):160–176. doi:10.1016/j.jmb.2009.09.009

108 Chapter 2. Participating

http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://doi.org/10.25080/majora-629e541a-00e
https://dx.doi.org/10.1002/jcc.21787
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144279/
https://dx.doi.org/10.1016%2Fj.jmb.2009.09.009


MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Do-
mański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Pack-
age for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Confer-
ence, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html,
doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. EN-
CORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415,
October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415,
doi:10.1371/journal.pcbi.1004415.

Calculating the Clustering Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in three trajectories, using the clustering ensemble simi-
larity method.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• scikit-learn

Optional packages for visualisation:
• matplotlib

Note
The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.
analysis.encore module in published work.

[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS)
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.clustering import ClusteringMethod as clm
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Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'NAMD']

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/
→˓coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent␣
→˓timesteps by copying self.ts while other readers update self.ts inplace. This␣
→˓behaviour will be changed in 3.0 to be the same as other readers
warnings.warn("DCDReader currently makes independent timesteps"

The trajectories can have different lengths, as seen below.

[3]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 100

Calculating clustering similarity with default settings

The clustering ensemble similarity method (ces, API docs here) combines every trajectory into a whole space of
conformations, and then uses a user-specified clustering_method to partition this into clusters. The population of
each trajectory ensemble within each cluster is taken as a probability density function.

The similarity of each probability density function is compared using the Jensen-Shannon divergence. This divergence
has an upper bound of ln (2), representing no similarity between the ensembles, and a lower bound of 0.0, representing
identical conformational ensembles.

You do not need to align your trajectories, as the function will align it for you (along your selection atoms, which are
select='name CA' by default).

[4]: ces0, details0 = encore.ces([u1, u2, u3])

encore.ces returns two outputs. ces0 is the similarity matrix for the ensemble of trajectories.

[5]: ces0

[5]: array([[0. , 0.68070702, 0.69314718],
[0.68070702, 0. , 0.69314718],
[0.69314718, 0.69314718, 0. ]])

details0 contains the calculated clusters as a encore.clustering.ClusterCollection.ClusterCollection.

[6]: cluster_collection = details0['clustering'][0]
print(type(cluster_collection))
print('We have found {} clusters'.format(len(cluster_collection)))

<class 'MDAnalysis.analysis.encore.clustering.ClusterCollection.ClusterCollection'>
We have found 49 clusters

We can access each Cluster at cluster_collection.clusters. For example, the first one has these elements:
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[7]: first_cluster = cluster_collection.clusters[0]
first_cluster

[7]: <Cluster with 5 elements, centroid=1, id=0>

[8]: first_cluster.elements

[8]: array([ 0, 1, 2, 3, 98])

Each cluster has an ID number and a centroid conformation.

[9]: print('The ID of this cluster is:', first_cluster.id)
print('The centroid is', first_cluster.centroid)

The ID of this cluster is: 0
The centroid is 1

Plotting

[10]: fig0, ax0 = plt.subplots()
im0 = plt.imshow(ces0, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Clustering ensemble similarity')
cbar0 = fig0.colorbar(im0)
cbar0.set_label('Jensen-Shannon divergence');
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Calculating clustering similarity with one method

Clustering methods should be subclasses of analysis.encore.clustering.ClusteringMethod, initialised with
your chosen parameters. Below, we set up an affinity progragation scheme, which uses message-passing to choose
a number of ‘exemplar’ points to represent the data and updates these points until they converge. The preference
parameter controls how many exemplars are used – a higher value results in more clusters, while a lower value results
in fewer clusters. The damping factor damps the message passing to avoid numerical oscillations. (See the scikit-learn
user guide for more information.)

The other keyword arguments control when to stop clustering. Adding noise to the data can also avoid numerical
oscillations.

[11]: clustering_method = clm.AffinityPropagationNative(preference=-1.0,
damping=0.9,
max_iter=200,
convergence_iter=30,
add_noise=True)

By default, MDAnalysis will run the job on one core. If it is taking too long and you have the resources, you can
increase the number of cores used.

[12]: ces1, details1 = encore.ces([u1, u2, u3],
select='name CA',

(continues on next page)
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(continued from previous page)

clustering_method=clustering_method,
ncores=4)

Plotting

[13]: fig1, ax1 = plt.subplots()
im1 = plt.imshow(ces1, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Clustering ensemble similarity')
cbar1 = fig1.colorbar(im1)
cbar1.set_label('Jensen-Shannon divergence');
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Calculating clustering similarity with multiple methods

You may want to try different clustering methods, or use different parameters within the methods. encore.ces allows
you to pass a list of clustering_methods to be applied.

Note
To use the other ENCORE methods available, you need to install scikit-learn.

Trying out different clustering parameters

The KMeans clustering algorithm separates samples into 𝑛 groups of equal variance, with centroids that minimise the
inertia. You must choose how many clusters to partition. (See the scikit-learn user guide for more information.)

[14]: km1 = clm.KMeans(12, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

km2 = clm.KMeans(6, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

The DBSCAN algorithm is a density-based clustering method that defines clusters as ‘high density’ areas, separated
by low density areas. The parameters min_samples and eps define how dense an area should be to form a cluster.
Clusters are defined around core points which have at least min_samples neighbours within a distance of eps. Points
that are at least eps in distance from any core point are considered outliers. (See the scikit-learn user guide for more
information.)

A higher min_samples or lower eps mean that data points must be more dense to form a cluster. You should consider
your eps carefully. In MDAnalysis, eps can be interpreted as the distance between two points in Angstrom.

Note
DBSCAN is an algorithm that can identify outliers, or data points that don’t fit into any cluster. dres() and
dres_convergence() treat the outliers as their own cluster. This means that the Jensen-Shannon divergence will
be lower than it should be for trajectories that have outliers. Do not use this clustering method unless you are certain
that your trajectories will not have outliers.

[15]: db1 = clm.DBSCAN(eps=0.5,
min_samples=5,
algorithm='auto',
leaf_size=30)

db2 = clm.DBSCAN(eps=1,
min_samples=5,
algorithm='auto',
leaf_size=30)

When we pass a list of clustering methods to encore.ces, the results get saved in ces2 and details2 in order.
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[16]: ces2, details2 = encore.ces([u1, u2, u3],
select='name CA',
clustering_method=[km1, km2, db1, db2],
ncores=4)

print(len(ces2), len(details2['clustering']))

4 4

Plotting

[17]: titles = ['Kmeans 12 clusters', 'Kmeans 6 clusters', 'DBSCAN eps=0.5', 'DBSCAN eps=1']
fig2, axes = plt.subplots(1, 4, sharey=True, figsize=(15, 3))
for i, (data, title) in enumerate(zip(ces2, titles)):

imi = axes[i].imshow(data, vmax=np.log(2), vmin=0)
axes[i].set_xticks(np.arange(3))
axes[i].set_xticklabels(labels)
axes[i].set_title(title)

plt.yticks(np.arange(3), labels)
cbar2 = fig2.colorbar(imi, ax=axes.ravel().tolist())
cbar2.set_label('Jensen-Shannon divergence');

As can be seen, reducing the number of clusters in the K-means method emphasises that DCD2 is more similar to the
NAMD trajectory than DCD. Meanwhile, increasing eps in DBSCAN clearly lowered the density required to form a
cluster so much that every trajectory is in the same cluster, and therefore they have identical probability distributions.

[18]: n_db = len(details2['clustering'][-1])

print('Number of clusters in DBSCAN eps=1: {}'.format(n_db))

Number of clusters in DBSCAN eps=1: 1

Estimating the error in a clustering ensemble similarity analysis

encore.ces also allows for error estimation using a bootstrapping method. This returns the average Jensen-Shannon
divergence, and standard deviation over the samples.

[19]: avgs, stds = encore.ces([u1, u2, u3],
select='name CA',
clustering_method=clustering_method,
estimate_error=True,
ncores=4)

2.1. Communications 115



MDAnalysis User Guide

[20]: avgs

[20]: array([[0. , 0.68682809, 0.69314718],
[0.68682809, 0. , 0.69314718],
[0.69314718, 0.69314718, 0. ]])

[21]: stds

[21]: array([[0.00000000e+00, 5.26432545e-03, 7.02166694e-17],
[5.26432545e-03, 0.00000000e+00, 8.59975057e-17],
[7.02166694e-17, 8.59975057e-17, 0.00000000e+00]])
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Calculating the Dimension Reduction Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in four trajectories, using the dimension reduction ensemble
similarity method.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• scikit-learn

Optional packages for visualisation:
• matplotlib
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Note
The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.
analysis.encore module in published work.

[1]: import numpy as np
import matplotlib.pyplot as plt
# This import registers a 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS)
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.dimensionality_reduction import␣
→˓DimensionalityReductionMethod as drm

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'NAMD']

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

The trajectories can have different lengths, as seen below.

[3]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 100

Calculating dimension reduction similarity with default settings

The dimension reduction similarity method projects ensembles onto a lower-dimensional space using your chosen di-
mension reduction algorithm (by default: stochastic proximity embedding). A probability density function is estimated
with Gaussian-based kernel-density estimation, using Scott’s rule to select the bandwidth.

The similarity of each probability density function is compared using the Jensen-Shannon divergence. This divergence
has an upper bound of ln (2) and a lower bound of 0.0. Normally, ln (2) represents no similarity between the ensem-
bles, and 0.0 represents identical conformational ensembles. However, due to the stochastic nature of the dimension
reduction, two identical symbols will not necessarily result in an exact divergence of 0.0. In addition, calculating the
similarity with dres() twice will result in similar but not identical numbers.
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You do not need to align your trajectories, as the function will align it for you (along your selection atoms, which are
select='name CA' by default). The function we use is dres (API docs).

[4]: dres0, details0 = encore.dres([u1, u2, u3])

encore.dres returns two outputs. dres0 is the similarity matrix for the ensemble of trajectories.

[5]: dres0

[5]: array([[0. , 0.68134177, 0.68452079],
[0.68134177, 0. , 0.66369356],
[0.68452079, 0.66369356, 0. ]])

details0 contains information on the dimensionality reduction, as well as the associated reduced coordinates. Each
frame is in the conformational ensemble is reduced to 3 dimensions.

[6]: reduced = details0['reduced_coordinates'][0]
reduced.shape

[6]: (3, 300)

Plotting

As with the other ensemble similarity methods, we can plot a flat matrix of similarity values.

[7]: fig0, ax0 = plt.subplots()
im0 = plt.imshow(dres0, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Dimension reduction ensemble similarity')
cbar0 = fig0.colorbar(im0)
cbar0.set_label('Jensen-Shannon divergence')
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We can also plot the reduced coordinates to directly visualise where each trajectory lies in the lower-dimensional space.

For the plotting of the reduced dimensions, we define a helper function to make it easier to partition the data.

[8]: def zip_data_with_labels(reduced):
rd_dcd = reduced[:, :98] # first 98 frames
rd_dcd2 = reduced[:, 98:(98+102)] # next 102 frames
rd_namd = reduced[:,(98+102):] # last 100 frames
return zip([rd_dcd, rd_dcd2, rd_namd], labels)

[24]: rdfig0 = plt.figure()
rdax0 = rdfig0.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(reduced):

rdax0.scatter(*data, label=label)
plt.legend()

[24]: <matplotlib.legend.Legend at 0x7fd2165443a0>
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Calculating dimension reduction similarity with one method

Dimension reduction methods should be subclasses of analysis.encore.dimensionality_reduction.
DimensionalityReductionMethod, initialised with your chosen parameters.

Below, we set up stochastic proximity embedding scheme, which maps data to lower dimensions by iteratively adjusting
the distance between a pair of points on the lower-dimensional map to match their full-dimensional proximity. The
learning rate controls the magnitude of these adjustments, and decreases over the mapping from max_lam (default:
2.0) to min_lam (default: 0.1) to avoid numerical oscillation. The learning rate is updated every cycle for ncycles,
over which nstep adjustments are performed.

The number of dimensions to map to is controlled by the keyword dimension (default: 2).

[10]: dim_red_method = drm.StochasticProximityEmbeddingNative(dimension=3,
min_lam=0.2,
max_lam=1.0,
ncycle=50,
nstep=1000)

You can also control the number of samples nsamples drawn from the ensembles used to calculate the Jensen-Shannon
divergence.

By default, MDAnalysis will run the job on one core. If it is taking too long and you have the resources, you can
increase the number of cores used.

[11]: dres1, details1 = encore.dres([u1, u2, u3],
select='name CA',

(continues on next page)
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(continued from previous page)

dimensionality_reduction_method=dim_red_method,
nsamples=1000,
ncores=4)

Plotting

Reducing the learning rate, number of cycles, and number of steps for the stochastic proximity embedding seems to
have left our trajectories closer on the lower-dimensional map.

[12]: fig1, ax1 = plt.subplots()
im1 = plt.imshow(dres1, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Dimension reduction ensemble similarity')
cbar1 = fig1.colorbar(im1)
cbar1.set_label('Jensen-Shannon divergence')

[13]: reduced1 = details1['reduced_coordinates'][0]

rdfig1 = plt.figure()
rdax1 = rdfig1.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(reduced1):

rdax1.scatter(*data, label=label)
(continues on next page)
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(continued from previous page)

plt.legend()

[13]: <matplotlib.legend.Legend at 0x7fd1d0c7ad00>

Calculating dimension reduction similarity with multiple methods

You may want to try different dimension reduction methods, or use different parameters within the methods. encore.
dres allows you to pass a list of dimensionality_reduction_methods to be applied.

Note
To use the other ENCORE methods available, you need to install scikit-learn.

Trying out different dimension reduction parameters

Principal component analysis uses singular value decomposition to project data onto a lower dimensional space. (See
the scikit-learn user guide for more information.)

The method provided by MDAnalysis.encore accepts any of the keyword arguments of sklearn.decomposition.PCA
except n_components. Instead, use dimension to specify how many components to keep.

[14]: pc1 = drm.PrincipalComponentAnalysis(dimension=1,
svd_solver='auto')

pc2 = drm.PrincipalComponentAnalysis(dimension=2,
(continues on next page)
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(continued from previous page)

svd_solver='auto')
pc3 = drm.PrincipalComponentAnalysis(dimension=3,

svd_solver='auto')
pc4 = drm.PrincipalComponentAnalysis(dimension=4,

svd_solver='auto')

When we pass a list of clustering methods to encore.dres, the results get saved in dres2 and details2 in order.

[15]: dres2, details2 = encore.dres([u1, u2, u3],
select='name CA',
dimensionality_reduction_method=[pc1, pc2, pc3, pc4],
ncores=4)

print(len(dres2), len(details2['reduced_coordinates']))

4 4

Plotting

[16]: titles = ['Dim = {}'.format(n) for n in range(1, 5)]
fig2, axes = plt.subplots(1, 4, sharey=True, figsize=(15, 3))
for i, (data, title) in enumerate(zip(dres2, titles)):

imi = axes[i].imshow(data, vmax=np.log(2), vmin=0)
axes[i].set_xticks(np.arange(3))
axes[i].set_xticklabels(labels)
axes[i].set_title(title)

plt.yticks(np.arange(3), labels)
cbar2 = fig2.colorbar(imi, ax=axes.ravel().tolist())
cbar2.set_label('Jensen-Shannon divergence')

In this case, adding more dimensions to the principal component analysis has little difference in how similar each
ensemble is over its resulting probability distribution (i.e. not similar at all!)

[17]: rd_p1, rd_p2, rd_p3, _ = details2['reduced_coordinates']

If we plot how the trajectories vary on one dimension with a violin plot, we can see that DCD is indeed very distant
from DCD2 and NAMD on the first principal component.

[18]: rd_p1_fig, rd_p1_ax = plt.subplots(figsize=(4, 8))
split_data = [x[0].reshape((-1,)) for x in zip_data_with_labels(rd_p1)]
rd_p1_ax.violinplot(split_data, showextrema=False)
rd_p1_ax.set_xticks(np.arange(1, 4))
rd_p1_ax.set_xticklabels(labels)
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[18]: [Text(1, 0, 'DCD'), Text(2, 0, 'DCD2'), Text(3, 0, 'NAMD')]

Expanding out to the second principal component shows that DCD2 and NAMD mainly vary on the second axis.

[19]: rd_p2_fig, rd_p2_ax = plt.subplots()
for data, label in zip_data_with_labels(rd_p2):

rd_p2_ax.scatter(*data, label=label)
plt.legend()

[19]: <matplotlib.legend.Legend at 0x7fd21662ec10>
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Plotting over the top three principal components gives quite a different result to the reduced coordinates given by
stochastic proximity embedding.

[20]: rd_p3_fig = plt.figure(figsize=(8, 6))
rd_p3_ax = rd_p3_fig.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(rd_p3):

rd_p3_ax.scatter(*data, label=label)
rd_p3_ax.set_xlabel('PC 1')
rd_p3_ax.set_ylabel('PC 2')
rd_p3_ax.set_zlabel('PC 3')
plt.legend()

[20]: <matplotlib.legend.Legend at 0x7fd216582df0>
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Estimating the error in a dimension reduction ensemble similarity analysis

encore.dres also allows for error estimation using a bootstrapping method. This returns the average Jensen-Shannon
divergence, and standard deviation over the samples.

[21]: avgs, stds = encore.dres([u1, u2, u3],
select='name CA',
dimensionality_reduction_method=dim_red_method,
estimate_error=True,
ncores=4)

[22]: avgs

[22]: array([[0. , 0.24545978, 0.60069985],
[0.24545978, 0. , 0.59556372],
[0.60069985, 0.59556372, 0. ]])

[23]: stds
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[23]: array([[0. , 0.06153911, 0.05076614],
[0.06153911, 0. , 0.03881675],
[0.05076614, 0.03881675, 0. ]])
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Evaluating convergence

Here we evaluate the convergence of a trajectory using the clustering ensemble similarity method and the dimensionality
reduction ensemble similarity methods.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• scikit-learn

Optional packages for visualisation:
• matplotlib

Note
The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.
analysis.encore module in published work.
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[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.clustering import ClusteringMethod as clm
from MDAnalysis.analysis.encore.dimensionality_reduction import␣
→˓DimensionalityReductionMethod as drm

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Evaluating convergence with similarity measures

The convergence of the trajectory is evaluated by the similarity of the conformation ensembles in windows of the
trajectory. The trajectory is divided into windows that increase by window_size frames. For example, if your trajectory
had 13 frames and you specified a window_size=3, your windows would be:

- Window 1: ---
- Window 2: ------
- Window 3: ---------
- Window 4: -------------

Where - represents 1 frame.

These are compared using either the similarity of their clusters (ces_convergence) or their reduced dimension coor-
dinates (dres_convergence). The rate at which the similarity values drop to 0 is indicative of how much the trajectory
keeps on resampling the same regions of the conformational space, and therefore is the rate of convergence.

Using default arguments with clustering ensemble similarity

See clustering_ensemble_similarity.ipynb for an introduction to comparing trajectories via clustering. See the API
documentation for ces_convergence for more information.

[3]: ces_conv = encore.ces_convergence(u, # universe
10, # window size
select='name CA') # default
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The output is an array of similarity values, with the shape (number_of_windows,
number_of_clustering_methods).

[4]: for row in ces_conv:
for sim in row:

print("{:>7.4f}".format(sim))

0.4819
0.4028
0.3170
0.2522
0.1983
0.1464
0.0991
0.0567
0.0000

This can be easily plotted as a line.

[15]: ces_fig, ces_ax = plt.subplots()
plt.plot(ces_conv)
ces_ax.set_xlabel('Window')
ces_ax.set_ylabel('Jensen-Shannon divergence')

[15]: Text(0, 0.5, 'Jensen-Shannon divergence')
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Comparing different clustering methods

You may want to try different clustering methods, or use different parameters within the methods. encore.
ces_convergence allows you to pass a list of clustering_methods to be applied, much like normal clustering
ensemble similarity methods.

Note
To use the other ENCORE methods available, you need to install scikit-learn.

The KMeans clustering algorithm separates samples into 𝑛 groups of equal variance, with centroids that minimise the
inertia. You must choose how many clusters to partition. (See the scikit-learn user guide for more information.)

[6]: km1 = clm.KMeans(12, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

km2 = clm.KMeans(6, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

km3 = clm.KMeans(3, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

When we pass a list of clustering methods to encore.ces_convergence, the similarity values get saved in ces_conv2
in order.

[7]: ces_conv2 = encore.ces_convergence(u, # universe
10, # window size
select='name CA',
clustering_method=[km1, km2, km3]

)
ces_conv2.shape

[7]: (9, 3)

As you can see, the number of clusters partitioned by KMeans has an effect on the resulting rate of convergence.

[8]: labels = ['12 clusters', '6 clusters', '3 clusters']

ces_fig2, ces_ax2 = plt.subplots()
for data, label in zip(ces_conv2.T, labels):

plt.plot(data, label=label)
ces_ax2.set_xlabel('Window')
ces_ax2.set_ylabel('Jensen-Shannon divergence')
plt.legend()

[8]: <matplotlib.legend.Legend at 0x7f9eb2146160>
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Using default arguments with dimension reduction ensemble similarity

See dimension_reduction_ensemble_similarity.ipynb for an introduction on comparing trajectories via dimensionality
reduction. We now use the dres_convergence function (API docs).

[9]: dres_conv = encore.dres_convergence(u, # universe
10, # window size
select='name CA') # default

Much like ces_convergence, the output is an array of similarity values.

[10]: dres_conv

[10]: array([[0.52983036],
[0.41177493],
[0.31770319],
[0.24269804],
[0.18980852],
[0.13913721],
[0.06342056],
[0.03125632],
[0. ]])
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[11]: dres_fig, dres_ax = plt.subplots()
plt.plot(dres_conv)
dres_ax.set_xlabel('Window')
dres_ax.set_ylabel('Jensen-Shannon divergence')

[11]: Text(0, 0.5, 'Jensen-Shannon divergence')

Comparing different dimensionality reduction methods

Again, you may want to compare the performance of different methods.

Principal component analysis uses singular value decomposition to project data onto a lower dimensional space. (See
the scikit-learn user guide for more information.)

The method provided by MDAnalysis.encore accepts any of the keyword arguments of sklearn.decomposition.PCA
except n_components. Instead, use dimension to specify how many components to keep.

[12]: pc1 = drm.PrincipalComponentAnalysis(dimension=1,
svd_solver='auto')

pc2 = drm.PrincipalComponentAnalysis(dimension=2,
svd_solver='auto')

pc3 = drm.PrincipalComponentAnalysis(dimension=3,
svd_solver='auto')
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[13]: dres_conv2 = encore.dres_convergence(u, # universe
10, # window size
select='name CA',
dimensionality_reduction_method=[pc1, pc2, pc3]

)
dres_conv2.shape

[13]: (9, 3)

Again, the size of the subspace you choose to include in your similarity comparison, affects the apparent rate of con-
vergence over the trajectory.

[14]: labels = ['1D', '2D', '3D']

dres_fig2, dres_ax2 = plt.subplots()
for data, label in zip(dres_conv2.T, labels):

plt.plot(data, label=label)
dres_ax2.set_xlabel('Window')
dres_ax2.set_ylabel('Jensen-Shannon divergence')
plt.legend()

[14]: <matplotlib.legend.Legend at 0x7f9e98499ee0>
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Structure

Elastic network analysis

Here we use a Gaussian network model to characterise conformational states of a trajectory.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

Note
The elastic network analysis follows the approach of ([HKP+07]). Please cite them when using the MDAnalysis.
analysis.gnm module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, DCD2
from MDAnalysis.analysis import gnm
import matplotlib.pyplot as plt
%matplotlib inline
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Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Using a Gaussian network model

Using a Gaussian network model to represent a molecule as an elastic network, we can characterise the concerted
motions of a protein, and the dominance of these motions, over a trajectory. The analysis is applied to the atoms in the
selection. If two atoms are within the cutoff distance (default: 7 ångström), they are considered to be bound by a
spring. This analysis is reasonably robust to the choice of cutoff (between 5-9 Å), but the singular value decomposition
may not converge with a lower cutoff.

We use the GNMAnalysis class (API docs) for the analysis.

[3]: nma1 = gnm.GNMAnalysis(u1,
select='name CA',
cutoff=7.0)

nma1.run()

[3]: <MDAnalysis.analysis.gnm.GNMAnalysis at 0x7f05569e96d0>

The output is saved in nma1.results: the time in picoseconds, the first eigenvalue, and the first eigenvector, associated
with each frame.

[4]: list(nma1.results.keys())

[4]: ['eigenvalues', 'eigenvectors', 'times']

[5]: (len(nma1.results['eigenvalues']), len(nma1.results['eigenvectors']),
len(nma1.results['times']))

[5]: (98, 98, 98)

[6]: nma2 = gnm.GNMAnalysis(u2,
select='name CA',
cutoff=7.0)

nma2.run()

[6]: <MDAnalysis.analysis.gnm.GNMAnalysis at 0x7f0556a1f8e0>

Unlike normal mode analysis, Gaussian network model analysis uses only a single eigenvalue to represent the rotation
and translation of each frame. The motion with the lowest positive eigenvalue represents the dominant motion of a
structure. The frequency of this motion is the square root of the eigenvalue.

Plotting the probability distribution of the frequency for the first eigenvector can highlight variation in the probability
distribution, which can indicate trajectories in different states.
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Below, we plot the distribution of eigenvalues. The dominant conformation state is represented by the peak at 0.06.

[7]: histfig, histax = plt.subplots(nrows=2, sharex=True, sharey=True)
histax[0].hist(nma1.results['eigenvalues'])
histax[1].hist(nma2.results['eigenvalues'])

histax[1].set_xlabel('Eigenvalue')
histax[0].set_ylabel('Frequency')
histax[1].set_ylabel('Frequency')

[7]: Text(0, 0.5, 'Frequency')

When we plot how the eigenvalue varies with time, we can see that the simulation transitions into the dominant con-
formation and stays there in both trajectories.

[8]: linefig, lineax = plt.subplots()
plt.plot(nma1.results['times'], nma1.results['eigenvalues'], label='DCD')
plt.plot(nma2.results['times'], nma2.results['eigenvalues'], label='DCD2')
lineax.set_xlabel('Time (ps)')
lineax.set_ylabel('Eigenvalue')
plt.legend()

[8]: <matplotlib.legend.Legend at 0x7f05540e1ac0>
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DCD and DCD2 appear to be in similar conformation states.

Using a Gaussian network model with only close contacts

The MDAnalysis.analysis.gnm.closeContactGNMAnalysis class provides a version of the analysis where the
Kirchhoff contact matrix is generated from close contacts between individual atoms in different residues, whereas the
GNMAnalysis class generates it directly from all the atoms. In this close contacts class, you can weight the contact
matrix by the number of atoms in the residues.

[9]: nma_close = gnm.closeContactGNMAnalysis(u1,
select='name CA',
cutoff=7.0,
weights='size')

nma_close.run()

[9]: <MDAnalysis.analysis.gnm.closeContactGNMAnalysis at 0x7f0554052c40>

[10]: plt.hist(nma_close.results['eigenvalues'])
plt.xlabel('Eigenvalue')
plt.ylabel('Frequency')

[10]: Text(0, 0.5, 'Frequency')

2.1. Communications 137



MDAnalysis User Guide

[11]: ax = plt.plot(nma_close.results['times'], nma_close.results['eigenvalues'])
plt.xlabel('Time (ps)')
plt.ylabel('Eigenvalue')

[11]: Text(0, 0.5, 'Eigenvalue')
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Average radial distribution functions

Here we calculate the average radial cumulative distribution functions between two groups of atoms.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
from MDAnalysis.analysis import rdf
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. [3]

[2]: u = mda.Universe(TPR, XTC)

Calculating the average radial distribution function for two groups of atoms

A radial distribution function 𝑔𝑎𝑏(𝑟) describes the time-averaged density of particles in 𝑏 from the reference group 𝑎 at
distance 𝑟. It is normalised so that it becomes 1 for large separations in a homogenous system.

𝑔𝑎𝑏(𝑟) = (𝑁𝑎𝑁𝑏)
−1

𝑁𝑎∑︁
𝑖=1

𝑁𝑏∑︁
𝑗=1

⟨𝛿(|r𝑖 − r𝑗 | − 𝑟)⟩

The radial cumulative distribution function is

𝐺𝑎𝑏(𝑟) =

∫︁ 𝑟

0

𝑑𝑟′4𝜋𝑟′2𝑔𝑎𝑏(𝑟
′)

The average number of 𝑏 particles within radius 𝑟 at density 𝜌 is:

𝑁𝑎𝑏(𝑟) = 𝜌𝐺𝑎𝑏(𝑟)

The average number of particles can be used to compute coordination numbers, such as the number of neighbours in
the first solvation shell.

Below, I calculate the average RDF between each atom of residue 60 to each atom of water to look at the distribution
of water over the trajectory. The RDF is limited to a spherical shell around each atom in residue 60 by range. Note
that the range is defined around each atom, rather than the center-of-mass of the entire group.

If you are after non-averaged radial distribution functions, have a look at the site-specific RDF class. The API docs for
the InterRDF class are here.
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[3]: res60 = u.select_atoms('resid 60')
water = u.select_atoms('resname SOL')

irdf = rdf.InterRDF(res60, water,
nbins=75, # default
range=(0.0, 15.0), # distance in angstroms
)

irdf.run()

[3]: <MDAnalysis.analysis.rdf.InterRDF at 0x7f0442f64370>

The distance bins are available at irdf.bins and the radial distribution function is at irdf.rdf.

[4]: irdf.results.bins

[4]: array([ 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1,
2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3,
4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5,
6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.3, 8.5, 8.7,
8.9, 9.1, 9.3, 9.5, 9.7, 9.9, 10.1, 10.3, 10.5, 10.7, 10.9,
11.1, 11.3, 11.5, 11.7, 11.9, 12.1, 12.3, 12.5, 12.7, 12.9, 13.1,
13.3, 13.5, 13.7, 13.9, 14.1, 14.3, 14.5, 14.7, 14.9])

[15]: plt.plot(irdf.results.bins, irdf.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[15]: Text(0, 0.5, 'Radial distribution')
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The total number of atom pairs in each distance bin over the trajectory, before it gets normalised over the density,
number of frames, and volume of each radial shell, is at irdf.count.

[6]: irdf.results.count

[6]: array([0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 7.000e+00, 1.200e+01, 6.000e+00, 1.800e+01,
5.200e+01, 1.010e+02, 1.540e+02, 1.700e+02, 1.920e+02, 2.300e+02,
3.000e+02, 3.950e+02, 4.140e+02, 4.290e+02, 5.310e+02, 5.700e+02,
6.190e+02, 6.780e+02, 7.020e+02, 7.910e+02, 8.560e+02, 9.320e+02,
9.800e+02, 1.017e+03, 1.089e+03, 1.197e+03, 1.364e+03, 1.349e+03,
1.483e+03, 1.556e+03, 1.713e+03, 1.783e+03, 1.781e+03, 1.950e+03,
2.145e+03, 2.140e+03, 2.298e+03, 2.379e+03, 2.501e+03, 2.777e+03,
2.868e+03, 2.900e+03, 3.024e+03, 3.186e+03, 3.244e+03, 3.382e+03,
3.551e+03, 3.817e+03, 3.829e+03, 4.160e+03, 4.219e+03, 4.411e+03,
4.557e+03, 4.824e+03, 4.943e+03, 4.980e+03, 5.237e+03, 5.507e+03,
5.630e+03, 5.878e+03, 6.193e+03, 6.533e+03, 6.740e+03, 6.922e+03,
7.276e+03, 7.293e+03, 7.616e+03])
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Calculating the average radial distribution function for a group of atoms to itself

You may want to calculate the average RDF for a group of atoms where atoms overlap; for instance, looking at
residue 60 around itself. In this case you should avoid including contributions from atoms interacting with them-
selves. The exclusion_block keyword allows you to mask pairs within the same chunk of atoms. Here you can pass
exclusion_block=(1, 1) to create chunks of size 1 and avoid computing the RDF to itself.

[7]: irdf2 = rdf.InterRDF(res60, res60,
exclusion_block=(1, 1))

irdf2.run()

[7]: <MDAnalysis.analysis.rdf.InterRDF at 0x7f044305ffa0>

[8]: plt.plot(irdf2.results.bins, irdf2.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[8]: Text(0, 0.5, 'Radial distribution')

Similarly, you can apply this to residues.

[9]: thr = u.select_atoms('resname THR')
print('There are {} THR residues'.format(len(thr.residues)))
print('THR has {} atoms'.format(len(thr.residues[0].atoms)))

There are 11 THR residues
THR has 14 atoms
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The code below calculates the RDF only using contributions from pairs of atoms where the two atoms are not in the
same threonine residue.

[10]: irdf3 = rdf.InterRDF(thr, thr,
exclusion_block=(14, 14))

irdf3.run()

[10]: <MDAnalysis.analysis.rdf.InterRDF at 0x7f0443041df0>

[11]: plt.plot(irdf3.results.bins, irdf3.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[11]: Text(0, 0.5, 'Radial distribution')

If you are splitting a residue over your two selections, you can discount pairs from the same residue by choosing
appropriately sized exclusion blocks.

[12]: first = thr.residues[0]
print('THR has these atoms: ', ', '.join(first.atoms.names))
thr_c1 = first.atoms.select_atoms('name C*')
print('THR has {} carbons'.format(len(thr_c1)))
thr_other1 = first.atoms.select_atoms('not name C*')
print('THR has {} non carbons'.format(len(thr_other1)))

THR has these atoms: N, H, CA, HA, CB, HB, OG1, HG1, CG2, HG21, HG22, HG23, C, O
THR has 4 carbons
THR has 10 non carbons
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The exclusion_block here ensures that the RDF is only computed from threonine carbons to atoms in different
threonine residues.

[13]: thr_c = thr.select_atoms('name C*')
thr_other = thr.select_atoms('not name C*')

irdf4 = rdf.InterRDF(thr_c, thr_other,
exclusion_block=(4, 10))

irdf4.run()

[13]: <MDAnalysis.analysis.rdf.InterRDF at 0x7f0442bc0af0>

[14]: plt.plot(irdf4.results.bins, irdf4.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[14]: Text(0, 0.5, 'Radial distribution')
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Calculating the RDF atom-to-atom

We calculate the site-specific radial distribution functions of solvent around certain atoms.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
from MDAnalysis.analysis import rdf
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u = mda.Universe(TPR, XTC)

Calculating the site-specific radial distribution function

A radial distribution function 𝑔𝑎𝑏(𝑟) describes the time-averaged density of particles in 𝑏 from the reference group 𝑎
at distance 𝑟. It is normalised so that it becomes 1 for large separations in a homogenous system. See the tutorial on
averaged RDFs for more information. The InterRDF_s class (API docs) allows you to compute RDFs on an atom-to-
atom basis, rather than simply giving the averaged RDF as in InterRDF.

Below, I calculate the RDF between selected alpha-carbons and the water atoms within 15 angstroms of CA60, in the
first frame of the trajectory. The water group does not update over the trajectory as the water moves towards and away
from the alpha-carbon.
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The RDF is limited to a spherical shell around each atom by range. Note that the range is defined around each atom,
rather than the center-of-mass of the entire group.

If density=True, the final RDF is over the average density of the selected atoms in the trajectory box, making it
comparable to the output of rdf.InterRDF. If density=False, the density is not taken into account. This can make
it difficult to compare RDFs between AtomGroups that contain different numbers of atoms.

[3]: ca60 = u.select_atoms('resid 61 and name CA')
ca61 = u.select_atoms('resid 62 and name CA')
ca62 = u.select_atoms('resid 63 and name CA')
water = u.select_atoms('resname SOL and sphzone 15 group sel_a', sel_a=ca60)

ags = [[ca60+ca61, water], [ca62, water]]

ss_rdf = rdf.InterRDF_s(u, ags,
nbins=75, # default
range=(0.0, 15.0), # distance
norm='density',
)

ss_rdf.run()

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/analysis/
→˓rdf.py:531: DeprecationWarning: The `u` attribute is superflous and will be removed in␣
→˓MDAnalysis 3.0.0.
warnings.warn("The `u` attribute is superflous and will be removed "

[3]: <MDAnalysis.analysis.rdf.InterRDF_s at 0x7faa885ab280>

Like rdf.InterRDF, the distance bins are available at ss_rdf.bins.

[4]: ss_rdf.results.bins

[4]: array([ 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1,
2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3,
4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5,
6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.3, 8.5, 8.7,
8.9, 9.1, 9.3, 9.5, 9.7, 9.9, 10.1, 10.3, 10.5, 10.7, 10.9,
11.1, 11.3, 11.5, 11.7, 11.9, 12.1, 12.3, 12.5, 12.7, 12.9, 13.1,
13.3, 13.5, 13.7, 13.9, 14.1, 14.3, 14.5, 14.7, 14.9])

ss_rdf.rdf contains the atom-pairwise RDF for each of your pairs of AtomGroups. It is a list with the same length as
your list of pairs ags. A result array has the shape (len(ag1), len(ag2), nbins) for the AtomGroup pair (ag1,
ag2).

[5]: print('There are {} water atoms'.format(len(water)))
print('The first result array has shape: {}'.format(ss_rdf.results.rdf[0].shape))
print('The second result array has shape: {}'.format(ss_rdf.results.rdf[1].shape))

There are 1041 water atoms
The first result array has shape: (2, 1041, 75)
The second result array has shape: (1, 1041, 75)

Index the results array to get the RDF for a particular pair of atoms. ss_rdf.rdf[i][j][k] will return the RDF
between atoms 𝑗 and 𝑘 in the 𝑖-th pair of atom groups. For example, below we get the RDF between the alpha-carbon
in residue 61 (i.e. the second atom of the first atom group) and the 571st atom of water.
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[6]: ca61_h2o_571 = ss_rdf.results.rdf[0][1][570]
ca61_h2o_571

[6]: array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.0023665 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.00114292,
0.00106921, 0. , 0.00094167, 0. , 0. ,
0. , 0.0007466 , 0. , 0. , 0. ,
0. , 0. , 0.00055068, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.0003116 , 0. , 0. , 0. ,
0. , 0. , 0.00025464, 0.00024669, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ])

[7]: plt.plot(ss_rdf.results.bins, ca61_h2o_571)
w570 = water[570]
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')
plt.title('RDF between CA61 and {}{}'.format(w570.name, w570.resid))

[7]: Text(0.5, 1.0, 'RDF between CA61 and MW6365')
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If you are having trouble finding pairs of atoms where the results are not simply 0, you can use Numpy functions to
find the indices of the nonzero values. Below we count the nonzero entries in the first rdf array.

[8]: j, k, nbin = np.nonzero(ss_rdf.results.rdf[0])
print(len(j), len(k), len(nbin))

4374 4374 4374

Each triplet of [j, k, nbin] indices is a nonzero value, corresponding to the nbinth bin between atoms 𝑗 and 𝑘.
For example:

[9]: print(f"{ss_rdf.results.rdf[0][j[0], k[0], nbin[0]]: .5f}")

0.00028

Right now, we don’t care which particular bin has a nonzero value. Let’s find which water atom is the most present
around the alpha-carbon of residue 60, i.e. the first atom.

[10]: # where j == 0, representing the first atom
water_for_ca60 = k[j==0]
# count how many of each atom index are in array
k_values, k_counts = np.unique(water_for_ca60,

return_counts=True)
# get the first k value with the most counts
k_max = k_values[np.argmax(k_counts)]

(continues on next page)

2.1. Communications 149



MDAnalysis User Guide

(continued from previous page)

print('The water atom with the highest distribution '
'around CA60 has index {}'.format(k_max))

The water atom with the highest distribution around CA60 has index 568

You can also calculate a cumulative distribution function for each of your results with ss_rdf.get_cdf(). This is
the actual count of atoms within the given range, averaged over the trajectory; the volume of each radial shell is not
taken into account. The result then gets saved into ss_rdf.cdf. The CDF has the same shape as the corresponding
RDF array.

[11]: cdf = ss_rdf.get_cdf()
print(cdf[0].shape)

(2, 1041, 75)

[12]: plt.plot(ss_rdf.results.bins, ss_rdf.results.cdf[0][0][568])
w568 = water[568]
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial cumulative distribution')
plt.title('RDF between CA60 and {}{}'.format(w568.name, w568.resid))

[12]: Text(0.5, 1.0, 'RDF between CA60 and HW16365')
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The site-specific RDF without densities

When the density of the selected atom groups over the box volume is not accounted for, your distribution values will
be proportionally lower.

[13]: ss_rdf_nodensity = rdf.InterRDF_s(u, ags,
nbins=75, # default
range=(0.0, 15.0), # distance
density=False,
)

ss_rdf_nodensity.run()
ss_rdf_nodensity.get_cdf()

[13]: [array([[[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
...,
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1]],

[[0. , 0. , 0. , ..., 0. , 0.1, 0.1],
[0. , 0. , 0. , ..., 0. , 0. , 0. ],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
...,
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1]]]),

array([[[0. , 0. , 0. , ..., 0. , 0.1, 0.1],
[0. , 0. , 0. , ..., 0. , 0. , 0. ],
[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
...,
[0. , 0. , 0. , ..., 0. , 0. , 0.1],
[0. , 0. , 0. , ..., 0. , 0. , 0. ],
[0. , 0. , 0. , ..., 0. , 0. , 0. ]]])]

[14]: plt.plot(ss_rdf_nodensity.results.bins,
ss_rdf_nodensity.results.rdf[0][1][570])

plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')
plt.title('RDF between CA61 and {}{}'.format(w570.name, w570.resid))

[14]: Text(0.5, 1.0, 'RDF between CA61 and MW6365')
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Protein dihedral angle analysis

We look at backbone dihedral angles and generate Ramachandran and Janin plots.

The methods and examples shown here are only applicable to Universes where protein residue names have standard
names, i.e. the backbone is comprised of –N–CA–C–N–CA– atoms.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import GRO, XTC
from MDAnalysis.analysis import dihedrals
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u = mda.Universe(GRO, XTC)
protein = u.select_atoms('protein')
print('There are {} residues in the protein'.format(len(protein.residues)))

There are 214 residues in the protein

2.1. Communications 153

https://matplotlib.org


MDAnalysis User Guide

Selecting dihedral atom groups

Proteins have canonical dihedral angles defined on the backbone atoms. 𝜑 (phi), 𝜓 (psi) and 𝜔 (omega) are backbone
angles. The side-chain dihedral angles are called 𝜒𝑛 (chi-𝑛), and can vary in number.

MDAnalysis allows you to directly select the atoms involved in the 𝜑, 𝜓, 𝜔, and 𝜒1 angles, provided that your protein
atoms have standard names. If MDAnalysis cannot find atoms matching the names that it expects, it will return None.
You can see below that phi_selection() returns an ordered AtomGroup of the atoms in the 𝜑 angle of a residue if
they can be found, and None if not.

[3]: for res in u.residues[210:220]:
phi = res.phi_selection()
if phi is None:

names = None
else:

names = phi.names
print('{}: {} '.format(res.resname, names))

LYS: ['C' 'N' 'CA' 'C']
ILE: ['C' 'N' 'CA' 'C']
LEU: ['C' 'N' 'CA' 'C']
GLY: ['C' 'N' 'CA' 'C']
SOL: None
SOL: None
SOL: None
SOL: None
SOL: None
SOL: None

Similar functions exist for the other angles:
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• 𝜓 angle (Residue.psi_selection)

• 𝜔 angle (Residue.omega_selection)

• 𝜒1 angle (Residue.chi1_selection)

Calculating dihedral angles

Dihedral angles can be calculated directly from the AtomGroup, by converting it to a Dihedral object.

[4]: omegas = [res.omega_selection() for res in protein.residues[5:10]]
omegas[0].dihedral.value()

[4]: -169.78220560918737

The analysis.dihedrals.Dihedral class (API docs) can be used to rapidly calculate dihedrals for AtomGroups
over the entire trajectory.

[5]: dihs = dihedrals.Dihedral(omegas).run()

The angles are saved in dihs.angles, in an array with the shape (n_frames, n_atomgroups).

[6]: dihs.results.angles.shape

[6]: (10, 5)

Plotting

[7]: labels = ['Res {}'.format(n) for n in np.arange(5, 10)]
for ang, label in zip(dihs.results.angles.T, labels):

plt.plot(ang, label=label)
plt.xlabel('Frame')
plt.ylabel('Angle (degrees)')
plt.legend()

[7]: <matplotlib.legend.Legend at 0x7fcd2ba11580>
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[8]: fig_polar = plt.figure()
ax_polar = fig_polar.add_subplot(111, projection='polar')
frames = np.arange(10)
for res, label in zip(dihs.results.angles.T, labels):

c = ax_polar.plot(res, frames, label=label)
plt.legend()

[8]: <matplotlib.legend.Legend at 0x7fcd2b8cb430>
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Ramachandran analysis

The Ramachandran class (API docs) calculates the 𝜑 and 𝜓 angles of the selected residues over the course of the
trajectory, again saving it into .angles. If residues are given that do not contain a 𝜑 and 𝜓 angle, they are omitted
from the results. For example, the angles returned are from every residue in the protein except the first and last, for
which a 𝜑 angle and a 𝜓 angle do not exist, respectively.

The returned angles are in the shape (n_frames, n_residues, 2) where the last dimension holds the 𝜑 and 𝜓 angle.

[9]: rama = dihedrals.Ramachandran(protein).run()
print(rama.results.angles.shape)

(10, 212, 2)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/analysis/
→˓dihedrals.py:407: UserWarning: Cannot determine phi and psi angles for the first or␣
→˓last residues
warnings.warn("Cannot determine phi and psi angles for the first "

You can plot this yourself, but Ramachandran.plot() is a convenience method that plots the data from each time step
onto a standard Ramachandran plot. You can call it with no arguments; any keyword arguments that you give (except
ax and ref) will be passed to matplotlib.axes.Axes.scatter to modify your plot.

[10]: rama.plot(color='black', marker='.')
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[10]: <AxesSubplot: xlabel='$\\phi$', ylabel='$\\psi$'>

If you set ref=True, your data will be plotted with areas that show the allowed (dark blue) and marginally allowed
(lighter blue) regions.

Note
These regions are computed from a reference set of 500 PDB files from ([LDA+03]). The allowed region includes 90%
data points, while the marginally allowed region includes 99% data points.

[11]: rama.plot(color='black', marker='.', ref=True)

[11]: <AxesSubplot: xlabel='$\\phi$', ylabel='$\\psi$'>
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Janin analysis

The Janin class (API docs) works similarly to the Ramachandran analysis, but looks at the 𝜒1 and 𝜒2 angles instead.
It therefore ignores all residues without a long enough side-chain, such as alanine, cysteine, and so on.

Again, the returned angles are in the shape (n_frames, n_residues, 2) where the last dimension holds the 𝜒1 and
𝜒2 angle. We can see that only about half of the residues in AdK have side-chains long enough for this analysis.

[12]: janin = dihedrals.Janin(protein).run()
print(janin.results.angles.shape)

(10, 129, 2)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/analysis/
→˓dihedrals.py:589: UserWarning: All residues selected with 'resname ALA CYS* GLY PRO␣
→˓SER THR VAL' have been removed from the selection.
warnings.warn(f"All residues selected with '{select_remove}' "

The Janin class also contains a plot() method.

Note
The reference regions here are also computed from the reference set of 500 PDB files from ([LDA+03]) (the allowed
region includes 90% data points, while the marginally allowed region includes 98% data points). Information about
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general Janin regions is from ([JWLM78]).

[13]: janin.plot(ref=True, marker='.', color='black')

[13]: <AxesSubplot: xlabel='$\\chi_1$', ylabel='$\\chi_2$'>

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Do-
mański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Pack-
age for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Confer-
ence, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html,
doi:10.25080/Majora-629e541a-00e.

[3] Joël Janin, Shoshanna Wodak, Michael Levitt, and Bernard Maigret. Conformation of amino acid side-chains in
proteins. Journal of Molecular Biology, 125(3):357 – 386, 1978. 00874. URL: http://www.sciencedirect.com/science/
article/pii/0022283678904084, doi:10.1016/0022-2836(78)90408-4.

[4] Simon C. Lovell, Ian W. Davis, W. Bryan Arendall, Paul I. W. de Bakker, J. Michael Word, Michael G. Prisant,
Jane S. Richardson, and David C. Richardson. Structure validation by C geometry: , and C deviation. Proteins:

160 Chapter 2. Participating

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://www.sciencedirect.com/science/article/pii/0022283678904084
http://www.sciencedirect.com/science/article/pii/0022283678904084


MDAnalysis User Guide

Structure, Function, and Bioinformatics, 50(3):437–450, January 2003. 03997. URL: http://doi.wiley.com/10.1002/
prot.10286, doi:10.1002/prot.10286.

[5] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Helix analysis

We look at protein helices with HELANAL.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 2.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• matplotlib

• nglview

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

Note
MDAnalysis.analysis.helix_analysis.HELANAL implements the HELANAL algorithm from [BKV00], which
itself uses the method of [SM67] to characterise each local axis. Please cite them when using this module in published
work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import helix_analysis as hel
import matplotlib.pyplot as plt
# import nglview as nv
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]: u = mda.Universe(PSF, DCD)

/Users/lily/pydev/mdanalysis/package/MDAnalysis/coordinates/DCD.py:165:␣
→˓DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts␣
→˓while other readers update self.ts inplace. This behavior will be changed in 3.0 to be␣
→˓the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/
→˓issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"
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Helix analysis

HELANAL can be used to characterize the geometry of helices with at least 9 residues. The geometry of an alpha
helix is characterized by computing local helix axes and local helix origins for four contiguous C-alpha atoms, using
the procedure of Sugeta and Miyazawa ([SM67]) and sliding this window over the length of the helix in steps of one
C-alpha atom.

HELANAL computes a number of properties.

For each sliding window, it calculates:

• local_rotation_vectors: the vectors bisecting the angles of the middle 2 atoms

• local_origins: the projected origins of the helix

• local_twists: the twist of each window (𝜃)

• residues_per_turn: how many residues would fit in a turn, based on local_twist

• local_axes: the axis of each local helix

• local_heights: the rise of each helix

HELANAL calculates the bends between each local_axes and fits the vector global_axes to the local_origins.
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all_bends contains the angles between every local_axes (𝛼) in a pairwise matrix, whereas local_bends contains
the angles between local_axes that are calculated 3 windows apart (𝛽). The global_tilts (𝛾) are calculated as the
angle between the global_axes and the user-given reference ref_axis.

Finally, local_screw angles are computed between the local_rotation_vectors and the normal plane of the
global_axes.

Running the analysis

As with most other analysis classes in MDAnalysis, pass in the universe and selection that you would to like to operate
on. The default reference axis is the z-axis. You can also pass in a list of selection strings to run HELANAL on multiple
helices at once.

[3]: h = hel.HELANAL(u, select='name CA and resnum 161-187',
ref_axis=[0, 0, 1]).run()

The properties described above are stored as attributes in h.results. For example, the all_bends matrix contains
the bends in a (n_frames, n_residues-3, n_residues-3) array.

[4]: h.results.all_bends.shape

[4]: (98, 24, 24)

Each property is also summarised with a mean value, the sample standard deviation, and the average deviation from
the mean.
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[5]: h.results.summary.keys()

[5]: dict_keys(['local_twists', 'local_bends', 'local_heights', 'local_nres_per_turn', 'local_
→˓origins', 'local_axes', 'local_helix_directions', 'local_screw_angles', 'global_axis',
→˓'global_tilts', 'all_bends'])

[6]: for key, val in h.results.summary['global_tilts'].items():
print(f"{key}: {val:.3f}")

mean: 86.121
sample_sd: 2.011
abs_dev: 1.715

As the data is stored as arrays, it can easily be plotted.

[7]: plt.plot(h.results.local_twists.mean(axis=1))
plt.xlabel('Frame')
plt.ylabel('Average twist (degrees)')
plt.show()

You can also create a Universe from the local_origins if you would like to save it as a file and visualise it in programs
such as VMD.

[8]: origins = h.universe_from_origins()
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[9]: # view = nv.show_mdanalysis(h.atomgroups[0])
# view.add_trajectory(origins)
# view

Below we use NGLView to create a representative GIF.

[10]: # from nglview.contrib.movie import MovieMaker
# movie = MovieMaker(
# view,
# step=4, # keep every 4th step
# render_params={"factor": 3}, # controls quality
# output='helanal_images/helanal-view.gif',
# )
# movie.make()
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Dimension reduction

A molecular dynamics trajectory with 𝑁 atoms can be considered a path through 3𝑁 -dimensional molecular config-
uration space. It remains difficult to extract important dynamics or compare trajectory similarity from such a high-
dimensional space. However, collective motions and physically relevant states can often be effectively described with
low-dimensional representations of the conformational space explored over the trajectory. MDAnalysis implements
two methods for dimensionality reduction.

Principal component analysis is a common linear dimensionality reduction technique that maps the coordinates in
each frame of your trajectory to a linear combination of orthogonal vectors. The vectors are called principal com-
ponents, and they are ordered such that the first principal component accounts for the most variance in the original
data (i.e. the largest uncorrelated motion in your trajectory), and each successive component accounts for less and less
variance. Trajectory coordinates can be transformed onto a lower-dimensional space (essential subspace) constructed
from these principal components in order to compare conformations. Your trajectory can also be projected onto each
principal component in order to visualise the motion described by that component.

Diffusion maps are a non-linear dimensionality reduction technique that embeds the coordinates of each frame onto
a lower-dimensional space, such that the distance between each frame in the lower-dimensional space represents their
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“diffusion distance”, or similarity. It integrates local information about the similarity of each point to its neighours,
into a global geometry of the intrinsic manifold. This means that this technique is not suitable for trajectories where the
transitions between conformational states is not well-sampled (e.g. replica exchange simulations), as the regions may
become disconnected and a meaningful global geometry cannot be approximated. Unlike PCA, there is no explicit
mapping between the components of the lower-dimensional space and the original atomic coordinates; no physical
interpretation of the eigenvectors is immediately available.

For computing similarity, see the tutorials in Trajectory similarity.

Principal component analysis of a trajectory

Here we compute the principal component analysis of a trajectory.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
• nglview

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import pca, align
# import nglview as nv

import warnings
# suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)
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Principal component analysis

Principal component analysis is a common linear dimensionality reduction technique that maps the coordinates in each
frame of your trajectory to a linear combination of orthogonal vectors. The vectors are called principal components,
and they are ordered such that the first principal component accounts for the most variance in the original data (i.e. the
largest uncorrelated motion in your trajectory), and each successive component accounts for less and less variance. The
frame-by-frame conformational fluctuation can be considered a linear combination of the essential dynamics yielded
by the PCA. Please see [ALB93], [Jol02], [SJS14], or [SS18] for a more in-depth introduction to PCA.

Trajectory coordinates can be transformed onto a lower-dimensional space (essential subspace) constructed from these
principal components in order to compare conformations. You can thereby visualise the motion described by that
component.

In MDAnalysis, the method implemented in the PCA class (API docs) is as follows:

1. Optionally align each frame in your trajectory to the first frame.

2. Construct a 3N x 3N covariance for the N atoms in your trajectory. Optionally, you can provide a mean; otherwise
the covariance is to the averaged structure over the trajectory.

3. Diagonalise the covariance matrix. The eigenvectors are the principal components, and their eigenvalues are the
associated variance.

4. Sort the eigenvalues so that the principal components are ordered by variance.

Note
Principal component analysis algorithms are deterministic, but the solutions are not unique. For example, you could
easily change the sign of an eigenvector without altering the PCA. Different algorithms are likely to produce different
answers, due to variations in implementation. MDAnalysis may not return the same values as another package.

[3]: aligner = align.AlignTraj(u, u, select='backbone',
in_memory=True).run()

You can choose how many principal components to save from the analysis with n_components. The default value is
None, which saves all of them. You can also pass a mean reference structure to be used in calculating the covariance
matrix. With the default value of None, the covariance uses the mean coordinates of the trajectory.

[4]: pc = pca.PCA(u, select='backbone',
align=True, mean=None,
n_components=None).run()

The principal components are saved in pc.p_components. If you kept all the components, you should have an array
of shape (𝑛𝑎𝑡𝑜𝑚𝑠 × 3, 𝑛𝑎𝑡𝑜𝑚𝑠 × 3).

[5]: backbone = u.select_atoms('backbone')
n_bb = len(backbone)
print('There are {} backbone atoms in the analysis'.format(n_bb))
print(pc.p_components.shape)

There are 855 backbone atoms in the analysis
(2565, 2565)

The variance of each principal component is in pc.variance. For example, to get the variance explained by the first
principal component to 5 decimal places:
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[6]: print(f"PC1: {pc.variance[0]:.5f}")

PC1: 4203.19053

This variance is somewhat meaningless by itself. It is much more intuitive to consider the variance of a principal
component as a percentage of the total variance in the data. MDAnalysis also tracks the percentage cumulative variance
in pc.cumulated_variance. As shown below, the first principal component contains 90.3% the total trajectory
variance. The first three components combined account for 96.4% of the total variance.

[7]: for i in range(3):
print(f"Cumulated variance: {pc.cumulated_variance[i]:.3f}")

Cumulated variance: 0.903
Cumulated variance: 0.951
Cumulated variance: 0.964

[8]: plt.plot(pc.cumulated_variance[:10])
plt.xlabel('Principal component')
plt.ylabel('Cumulative variance')
plt.show()
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Visualising projections into a reduced dimensional space

The pc.transform() method transforms a given atom group into weights w𝑖 over each principal component 𝑖.

w𝑖(𝑡) = (r(𝑡)− r) · u𝑖

r(𝑡) are the atom group coordinates at time 𝑡, r are the mean coordinates used in the PCA, and u𝑖 is the 𝑖th principal
component eigenvector u.

While the given atom group must have the same number of atoms that the principal components were calculated over,
it does not have to be the same group.

Again, passing n_components=Nonewill tranform your atom group over every component. Below, we limit the output
to projections over 3 principal components only.

[9]: transformed = pc.transform(backbone, n_components=3)
transformed.shape

[9]: (98, 3)

The output has the shape (n_frames, n_components). For easier analysis and plotting we can turn the array into a
DataFrame.

[10]: df = pd.DataFrame(transformed,
columns=['PC{}'.format(i+1) for i in range(3)])

df['Time (ps)'] = df.index * u.trajectory.dt
df.head()

[10]: PC1 PC2 PC3 Time (ps)
0 118.408413 29.088241 15.746624 0.0
1 115.561879 26.786797 14.652498 1.0
2 112.675616 25.038766 12.920274 2.0
3 110.341467 24.306984 11.427098 3.0
4 107.584302 23.464154 11.612104 4.0

There are several ways we can visualise the data. Using the Seaborn’s PairGrid tool is the quickest and easiest way,
if you have seaborn already installed.

Note
You will need to install the data visualisation library Seaborn for this function.

[11]: import seaborn as sns

g = sns.PairGrid(df, hue='Time (ps)',
palette=sns.color_palette('Oranges_d',

n_colors=len(df)))
g.map(plt.scatter, marker='.')
plt.show()
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Another way to investigate the essential motions of the trajectory is to project the original trajectory onto each of the
principal components, to visualise the motion of the principal component. The outer product ⊗ of the weights w𝑖(𝑡)
for principal component 𝑖 with the eigenvector u𝑖 describes fluctuations around the mean on that axis, so the projected
trajectory r𝑖(𝑡) is simply the fluctuations added onto the mean positions r.

r𝑖(𝑡) = w𝑖(𝑡)⊗ u𝑖 + r

Below, we generate the projected coordinates of the first principal component. The mean positions are stored at pc.
mean.

[12]: pc1 = pc.p_components[:, 0]
trans1 = transformed[:, 0]
projected = np.outer(trans1, pc1) + pc.mean.flatten()

(continues on next page)
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coordinates = projected.reshape(len(trans1), -1, 3)

We can create a new universe from this to visualise the movement over the first principal component.

[13]: proj1 = mda.Merge(backbone)
proj1.load_new(coordinates, order="fac")

[13]: <Universe with 855 atoms>

[14]: # view = nv.show_mdanalysis(proj1.atoms)
# view

If you have nglview installed, you can view the trajectory in the notebook. Otherwise, you can write the trajectory out
to a file and use another program such as VMD. Below, we create a movie of the component.

[15]: # from nglview.contrib.movie import MovieMaker
# movie = MovieMaker(
# view,
# step=4, # keep every 4th frame
# output='pc1.gif',
# render_params={"factor": 3}, # set to 4 for highest quality
# )
# movie.make()

Measuring convergence with cosine content

The essential modes of a trajectory usually describe global, collective motions. The cosine content of a principal
component can be interpreted to determine whether proteins are transitioning between conformational states. However,
random diffusion can also appear to produce collective motion. The cosine content can measure the convergence of a
trajectory and indicate poor sampling.

The cosine content of a principal component measures how similar it is to a cosine shape. Values range from 0 (no
similarity to a cosine) and 1 (a perfect cosine shape). If the values of the first few principal components are close to 1,
this can indicate poor sampling, as the motion of the particles may not be distinguished from random diffusion. Values
below 0.7 do not indicate poor sampling.

For more information, please see [MLS09].

Note
[Hes02] first published the usage of cosine content to evaluate sampling. Please cite this paper when using the
MDAnalysis.analysis.pca.cosine_content method in published work.

Below we calculate the cosine content of the first five principal components in the transformed subspace. Note that
this is an example only, to dmonstrate how to use the method; the first few principal components of short simulations
always represent random diffusion ([Hes02]).

[16]: for i in range(3):
cc = pca.cosine_content(transformed, i)
print(f"Cosine content for PC {i+1} = {cc:.3f}")
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Cosine content for PC 1 = 0.960
Cosine content for PC 2 = 0.906
Cosine content for PC 3 = 0.723

As can be seen, the cosine content of each component is quite high. If we plot the transformed components over time,
we can see that each component does resemble a cosine curve.

[17]: # melt the dataframe into a tidy format
melted = pd.melt(df, id_vars=["Time (ps)"],

var_name="PC",
value_name="Value")

g = sns.FacetGrid(melted, col="PC")
g.map(sns.lineplot,

"Time (ps)", # x-axis
"Value", # y-axis
ci=None) # no confidence interval

plt.show()
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Non-linear dimension reduction to diffusion maps

Here we reduce the dimensions of a trajectory into a diffusion map.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Note
Please cite [CL06] if you use the MDAnalysis.analysis.diffusionmap.DiffusionMap in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import diffusionmap
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme ([BDPW09]).
The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/
→˓coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent␣
→˓timesteps by copying self.ts while other readers update self.ts inplace. This behavior␣
→˓will be changed in 3.0 to be the same as other readers. Read more at https://github.
→˓com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect␣
→˓you.
warnings.warn("DCDReader currently makes independent timesteps"
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Diffusion maps

Diffusion maps are a non-linear dimensionality reduction technique that embeds the coordinates of each frame onto
a lower-dimensional space, such that the distance between each frame in the lower-dimensional space represents their
“diffusion distance”, or similarity. It integrates local information about the similarity of each point to its neighours,
into a global geometry of the intrinsic manifold. This means that this technique is not suitable for trajectories where the
transitions between conformational states are not well-sampled (e.g. replica exchange simulations), as the regions may
become disconnected and a meaningful global geometry cannot be approximated. Unlike principal component analysis,
there is no explicit mapping between the components of the lower-dimensional space and the original atomic coordi-
nates; no physical interpretation of the eigenvectors is immediately available. Please see [CL06], [dlPHHvdW08],
[RZMC11] and [FPKD11] for more information.

The default distance metric implemented in MDAnalysis’ DiffusionMap class is RMSD.

Note
MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite [The05] if you use
the default distance metric in published work.

[3]: dmap = diffusionmap.DiffusionMap(u, select='backbone', epsilon=2)
dmap.run()

[3]: <MDAnalysis.analysis.diffusionmap.DiffusionMap at 0x7f75f1291520>

The first eigenvector in a diffusion map is always essentially all ones (when divided by a constant):

[4]: dmap._eigenvectors[:, 0]

[4]: array([0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
0.10101525, 0.10101525, 0.10101525])

Therefore, when we embed the trajectory onto the dominant eigenvectors, we ignore the first eigenvector. In order to
determine which vectors are dominant, we can examine the eigenvalues for a spectral gap: where the eigenvalues stop
decreasing constantly in value.
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[5]: fig, ax = plt.subplots()
ax.plot(dmap.eigenvalues[1:16])

[5]: [<matplotlib.lines.Line2D at 0x7f75f1291970>]

From this plot, we take the first k dominant eigenvectors to be the first five. Below, we transform the trajectory onto
these eigenvectors. The time argument is the exponent that the eigenvalues are raised to for embedding. As values
increase for time, more dominant eigenvectors (with lower eigenvalues) dominate the diffusion distance more. The
transform method returns an array of shape (# frames, # eigenvectors).

[6]: transformed = dmap.transform(5, # number of eigenvectors
time=1)

transformed.shape

[6]: (98, 5)

For easier analysis and plotting we can turn the array into a DataFrame.

[7]: df = pd.DataFrame(transformed,
columns=['Mode{}'.format(i+2) for i in range(5)])

df['Time (ps)'] = df.index * u.trajectory.dt
df.head()

[7]: Mode2 Mode3 Mode4 Mode5 Mode6 Time (ps)
0 0.094795 0.075950 0.054708 0.035526 0.022757 0.0
1 0.166068 0.132017 0.094409 0.060914 0.038667 1.0
2 0.199960 0.154475 0.107425 0.067632 0.041445 2.0
3 0.228815 0.168694 0.111460 0.067112 0.038469 3.0

(continues on next page)
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4 0.250384 0.171873 0.103407 0.057143 0.028398 4.0

There are several ways we can visualise the data. Using the Seaborn’s PairGrid tool is the quickest and easiest way, if
you have seaborn already installed. Each of the subplots below illustrates axes of the lower-dimensional embedding of
the higher-dimensional data, such that dots (frames) that are close are kinetically close (connected by a large number
of short pathways), whereas greater distance indicates states that are connected by a smaller number of long pathways.
Please see [FPKD11] for more information.

Note
You will need to install the data visualisation library Seaborn for this function.

[8]: import seaborn as sns

g = sns.PairGrid(df, hue='Time (ps)',
palette=sns.color_palette('Oranges_d',

n_colors=len(df)))
g.map(plt.scatter, marker='.')

[8]: <seaborn.axisgrid.PairGrid at 0x7f75f0149520>
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Polymers and membranes

MDAnalysis has several analyses specifically for polymers, membranes, and membrane proteins.

Determining the persistence length of a polymer

Here we determine the persistence length of a polymer.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TRZ_psf, TRZ
from MDAnalysis.analysis import polymer
%matplotlib inline

Loading files

The test files we will be working with here feature a pure polymer melt of a polyamide.

[2]: u = mda.Universe(TRZ_psf, TRZ)
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Choosing the chains and backbone atoms

We can define the chains of polyamide to be the common definition of a molecule: where each atom is bonded to at
least one other in the group, and not bonded to any atom outside the group. MDAnalysis provides these as fragments.

[3]: chains = u.atoms.fragments

We then want to select only the backbone atoms for each chain, i.e. only the carbons and nitrogens.

[4]: backbones = [ch.select_atoms('not name O* H*') for ch in chains]

This should give us AtomGroups where the spatial arrangement is linear. However, the atoms are in index order. We
can use sort_backbone to arrange our atom groups into their linear arrangement order.

[5]: sorted_bb = [polymer.sort_backbone(bb) for bb in backbones]

Calculating the persistence length

The persistence length is the length at which two points on the polymer chain become decorrelated. This is determined
by first measuring the autocorrelation 𝐶(𝑛) of two bond vectors (a𝑖,a𝑖+𝑛) separated by 𝑛 bonds, where

𝐶(𝑛) = ⟨cos 𝜃𝑖,𝑖+𝑛⟩ = ⟨ai · ai+n⟩

An exponential decay is then fitted to this, which yields the persistence length 𝑙𝑃 from the average bond length 𝑙𝐵 .

𝐶(𝑛) ≈ exp

(︂
−𝑛𝑙𝐵
𝑙𝑃

)︂
We set up our PersistenceLength class (API docs). Note that every chain we pass into it must have the same length.

[6]: plen = polymer.PersistenceLength(sorted_bb)
plen.run()

[6]: <MDAnalysis.analysis.polymer.PersistenceLength at 0x7f4b7ddfd160>

The average bond length is found at plen.results.lb, the calculated persistence length at plen.results.lp, the
measured autocorrelation at plen.results and the modelled decorrelation fit at plen.results.fit.

[20]: print(plen.results.fit.shape)
print('The persistence length is {:.3f}'.format(plen.results.lp))

(179,)
The persistence length is 6.917

MDAnalysis.analysis.polymer.PersistenceLength provides a convenience method to plot the results.

[21]: plen.plot()

[21]: <AxesSubplot:xlabel='x', ylabel='$C(x)$'>
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Analysing pore dimensions with HOLE2

Here we use HOLE to analyse pore dimensions in a membrane.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• HOLE

• matplotlib

• numpy

Note
The classes in MDAnalysis.analysis.hole2 are wrappers around the HOLE program. Please cite ([SGW93],
[SNW+96]) when using this module in published work.
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[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_HOLE
from MDAnalysis.analysis import hole2
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

import warnings
# suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Background

The MDAnalysis.analysis.hole2 module (API docs) provides wrapper classes and functions that call the HOLE
program. This means you must have installed the program yourself before you can use the class. You then have 2
options, you either pass the path to your hole executable to the class; in this example, hole is installed at ~/hole2/
exe/hole. Or, set your binary path variable ($PATH in Unix systems) to point to the executable’s folder so you don’t
have to point to the binary explicitly every time you call hole or any of its helper tools. This is what we have done
here, so we don’t have to set the executable argument.

HOLE defines a series of points throughout the pore from which a sphere can be generated that does not overlap any
atom (as defined by its van der Waals radius). (Please see ([SGW93], [SNW+96]) for a complete explanation). By
default, it ignores residues with the following names: “SOL”, “WAT”, “TIP”, “HOH”, “K “, “NA “, “CL “. You can
change these with the ignore_residues keyword. Note that the residue names must have 3 characters. Wildcards do
not work.

This tutorial first demonstrates how to use the MDAnalysis.analysis.hole2.hole function similarly to the HOLE
binary on a PDB file. We then demonstrate how to use the MDAnalysis.analysis.hole2.HoleAnalysis class on
a trajectory of data. You may prefer to use the more fully-featured HoleAnalysis class for the extra functionality we
provide, such as creating an animation in VMD of the pore.

Using HOLE with a PDB file

The hole function allows you to specify points to begin searching at (cpoint) and a search direction (cvect), the
sampling resolution (sample), and more. Please see the documentation for full details.

The PDB file here is the experimental structure of the Gramicidin A channel. Note that we pass HOLE a PDB file
directly, without creating a MDAnalysis.Universe.

We are setting a random_seed here so that the results in the tutorial can be reproducible. This is normally not advised.

[2]: profiles = hole2.hole(PDB_HOLE,
outfile='hole1.out',
sphpdb_file='hole1.sph',
vdwradii_file=None,
random_seed=31415,
# executable='~/hole2/exe/hole',
)

outfile and sphpdb_file are the names of the files that HOLE will write out. vdwradii_file is a file of necessary
van der Waals’ radii in a HOLE-readable format. If set to None, MDAnalysis will create a simple2.rad file with the
built-in radii from the HOLE distribution.

This will create several outputs in your directory:
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• hole1.out: the log file for HOLE.

• hole1.sph: a PDB-like file containing the coordinates of the pore centers.

• simple2.rad: file of Van der Waals’ radii

• tmp/pdb_name.pdb: the short name of a PDB file with your structure. As hole is a FORTRAN77 program, it
is limited in how long of a filename that it can read. Symlinking the file to the current directory can shorten the
path.

If you do not want to keep the files, set keep_files=False. Keep in mind that you will not be able to create a VMD
surface without the sphpdb file.

The pore profile itself is in the profiles1 dictionary, indexed by frame. There is only one frame in this PDB file, so
it is at profiles1[0].

[3]: profiles[0].shape

[3]: (425,)

Each profile is a numpy.recarray with the fields below as an entry for each rxncoord:

• rxn_coord: the distance along the pore axis in angstrom

• radius: the pore radius in angstrom

• cen_line_D: distance measured along the pore centre line - the first point found is set to zero.

[4]: profiles[0].dtype.names

[4]: ('rxn_coord', 'radius', 'cen_line_D')

You can then proceed with your own analysis of the profiles.

[5]: rxn_coords = profiles[0].rxn_coord
pore_length = rxn_coords[-1] - rxn_coords[0]
print('The pore is {} angstroms long'.format(pore_length))

The pore is 42.4 angstroms long

You can create a VMD surface from the hole1.sph output file, using the create_vmd_surface function.

[6]: hole2.create_vmd_surface(filename='hole1.vmd',
sphpdb='hole1.sph',
# sph_process='~/hole2/exe/sph_process',
)

[6]: 'hole1.vmd'

To view this, open your PDB file in VMD.

vmd tmp*/*.pdb

Load the output file in Extensions > Tk Console:

source hole1.vmd

Your pore surface will be drawn as below.
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MDAnalysis supports many of the options that can be customised in HOLE. For example, you can specify a starting
point for the pore search within the pore with cpoint, and a sample distance (default: 0.2 angstrom) for the distance
between the planes used in HOLE. Please see the MDAnalysis.analysis.hole2 for more information.
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Using HOLE with a trajectory

One of the limitations of the hole program is that it can only accept PDB files. In order to use other formats with hole,
or to run hole on trajectories, we can use the hole2.HoleAnalysis class with an MDAnalysis.Universe. While
the example file below is a PDB, you can use any files to create your Universe. You can also specify that the HOLE
analysis is only run on a particular group of atoms with the select keyword (default value: ‘protein’).

As with hole(), HoleAnalysis allows you to select a starting point for the search (cpoint). You can pass in a
coordinate array; alternatively, you can use the center-of-geometry of your atom selection in each frame as the start.

[7]: from MDAnalysis.tests.datafiles import MULTIPDB_HOLE

u = mda.Universe(MULTIPDB_HOLE)

ha = hole2.HoleAnalysis(u, select='protein',
cpoint='center_of_geometry',
# executable='~/hole2/exe/hole',
)

ha.run(random_seed=31415)

[7]: <MDAnalysis.analysis.hole2.hole.HoleAnalysis at 0x7f1a146af610>

Working with the data

Again, the data is stored in ha.results.profiles as a dictionary of numpy.recarrays. The dictionary is indexed
by frame; we can see the HOLE profile for the fourth frame below (truncated to the first 10 values).

[8]: for rxn_coord, radius, cen_line_D in (ha.results.profiles[3][:10]):
print(f"{rxn_coord:.2f}, {radius:.2f}, {cen_line_D:.2f}")

-21.01, 15.35, -39.24
-20.91, 12.63, -34.65
-20.81, 10.64, -30.05
-20.71, 9.58, -27.73
-20.61, 8.87, -25.40
-20.51, 8.57, -23.62
-20.41, 8.56, -21.84
-20.31, 8.48, -21.74
-20.21, 8.39, -21.64
-20.11, 8.30, -21.54

If you want to collect each individual property, use gather(). Setting flat=True flattens the lists of rxn_coord,
radius, and cen_line_D, in order. You can select which frames you want by passing an iterable of frame indices to
frames. frames=None returns all frames.

[9]: gathered = ha.gather()
print(gathered.keys())

dict_keys(['rxn_coord', 'radius', 'cen_line_D'])

[10]: print(len(gathered['rxn_coord']))

11
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[11]: flat = ha.gather(flat=True)
print(len(flat['rxn_coord']))

3967

You may also want to collect the radii in bins of rxn_coord for the entire trajectory with the bin_radii() function.
range should be a tuple of the lower and upper edges of the first and last bins, respectively. If range=None, the
minimum and maximum values of rxn_coord are used.

bins can be either an iterable of (lower, upper) edges (in which case range is ignored), or a number specifying how
many bins to create with range.

[12]: radii, edges = ha.bin_radii(bins=100, range=None)

The closely related histogram_radii() function takes the same arguments as bin_radii() to group the pore radii,
but allows you to specify an aggregating function with aggregator (default: np.mean) that will be applied to each
array of radii. The arguments for this function, and returned values, are analogous to those for np.histogram.

[13]: means, edges = ha.histogram_radii(bins=100, range=None,
aggregator=np.mean)

We can use this to plot the mean radii of the pore over the trajectory. (You can also accomplish this with the
plot_mean_profile() function shown below, by setting n_std=0.)

[14]: midpoints = 0.5*(edges[1:]+edges[:-1])
plt.plot(midpoints, means)
plt.ylabel(r"Mean HOLE radius $R$ ($\AA$)")
plt.xlabel(r"Pore coordinate $\zeta$ ($\AA$)")

[14]: Text(0.5, 0, 'Pore coordinate $\\zeta$ ($\\AA$)')
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HoleAnalysis also has the min_radius() function, which will return the minimum radius in angstrom for each
frame. The resulting array has the shape (#n_frames, 2).

[15]: min_radii = ha.min_radius()
for frame, min_radius in min_radii:

print(f"Frame {int(frame)}: {min_radius:.3f}")

Frame 0: -0.237
Frame 1: 1.567
Frame 2: 1.533
Frame 3: 1.425
Frame 4: 1.243
Frame 5: 1.198
Frame 6: 1.296
Frame 7: 1.438
Frame 8: 1.511
Frame 9: 0.879
Frame 10: 0.997

[16]: plt.plot(min_radii[:, 0], min_radii[:, 1])
plt.ylabel('Minimum HOLE radius $R$ ($\AA$)')
plt.xlabel('Frame')

[16]: Text(0.5, 0, 'Frame')
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Visualising the VMD surface

The create_vmd_surface() method is built into the HoleAnalysis class. It writes a VMD file that changes the
pore surface for each frame in VMD. Again, load your file and source the file in the Tk Console:

source holeanalysis.vmd

[17]: ha.create_vmd_surface(filename='holeanalysis.vmd')

[17]: 'holeanalysis.vmd'

Plotting

HoleAnalysis has several convenience methods for plotting. plot() plots the HOLE radius over each pore coordi-
nate, differentiating each frame with colour.

[18]: ha.plot()

[18]: <AxesSubplot: xlabel='Pore coordinate $\\zeta$ ($\\AA$)', ylabel='HOLE radius $R$ ($\\AA
→˓$)'>
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You can choose to plot specific frames, or specify colours or a colour map. Please see the documentation for a full
description of arguments.

[19]: ha.plot(frames=[0, 2, 5, 9])

[19]: <AxesSubplot: xlabel='Pore coordinate $\\zeta$ ($\\AA$)', ylabel='HOLE radius $R$ ($\\AA
→˓$)'>
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The plot3D() function separates each frame onto its own axis in a 3D plot.

[20]: ha.plot3D()

[20]: <Axes3DSubplot: xlabel='Pore coordinate $\\zeta$ ($\\AA$)', ylabel='Frames', zlabel=
→˓'HOLE radius $R$ ($\\AA$)'>
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You can choose to plot only the part of each pore lower than a certain radius by setting r_max.

[21]: ha.plot3D(r_max=2.5)

[21]: <Axes3DSubplot: xlabel='Pore coordinate $\\zeta$ ($\\AA$)', ylabel='Frames', zlabel=
→˓'HOLE radius $R$ ($\\AA$)'>
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You can also plot the mean and standard deviation of the pore radius over the pore coordinate.

[22]: ha.plot_mean_profile(bins=100, # how much to chunk rxn_coord
n_std=1, # how many standard deviations from mean
color='blue', # color of plot
fill_alpha=0.2, # opacity of standard deviation
legend=True)

[22]: <AxesSubplot: xlabel='Pore coordinate $\\zeta$ ($\\AA$)', ylabel='HOLE radius $R$ ($\\AA
→˓$)'>
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Ordering HOLE profiles with an order parameter

If you are interested in the HOLE profiles over an order parameter, you can directly pass that into the analysis after it
is run. Below, we use an order parameter of RMSD from a reference structure.

Note
Please cite ([SFSB14]) when using the over_order_parameters functionality.

[23]: from MDAnalysis.analysis import rms

ref = mda.Universe(PDB_HOLE)
rmsd = rms.RMSD(u, ref, select='protein', weights='mass').run()
rmsd_values = rmsd.rmsd[:, 2]
for i, rmsd in enumerate(rmsd_values):

print(f"Frame {i}: {rmsd:.2f}")

Frame 0: 6.11
Frame 1: 4.88
Frame 2: 3.66
Frame 3: 2.44
Frame 4: 1.22

(continues on next page)
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Frame 5: 0.00
Frame 6: 1.22
Frame 7: 2.44
Frame 8: 3.66
Frame 9: 4.88
Frame 10: 6.11

You can pass this in as order_parameter. The resulting profiles dictionary will have your order parameters as
keys. You should be careful with this if your order parameter has repeated values, as duplicate keys are not
possible; each duplicate key just overwrites the previous value.

[24]: op_profiles = ha.over_order_parameters(rmsd_values)

You can see here that the dictionary does not order the entries by the order parameter. If you iterate over the dictionary,
it will return each (key, value) pair in sorted key order.

[25]: for order_parameter, profile in op_profiles.items():
print(f"{order_parameter:.3f}, {len(profile)}")

0.000, 543
1.221, 389
1.221, 511
2.442, 419
2.442, 399
3.663, 379
3.663, 443
4.884, 391
4.884, 149
6.105, 205
6.105, 139

You can also select specific frames for the new profiles.

[26]: op_profiles = ha.over_order_parameters(rmsd_values, frames=[0, 4, 9])
for order_parameter, profile in op_profiles.items():

print(f"{order_parameter:.3f}, {len(profile)}")

1.221, 511
4.884, 149
6.105, 205

Plotting

HoleAnalysis also provides convenience functions for plotting over order parameters. Unlike plot(),
plot_order_parameters() requires an aggregator function that reduces an array of radii to a singular value. The
default function is min(). You can also pass in functions such as max() or np.mean(), or define your own function
to operate on an array and return a vlue.

[27]: ha.plot_order_parameters(rmsd_values,
aggregator=min,
xlabel='RMSD to reference ($\AA$)',
ylabel='Minimum HOLE pore radius $r$ ($\AA$)')
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[27]: <AxesSubplot: xlabel='RMSD to reference ($\\AA$)', ylabel='Minimum HOLE pore radius $r$ (
→˓$\\AA$)'>

plot3D_order_parameters() functions in a similar way to plot3D(), although you need to pass in the order pa-
rameters.

[28]: ha.plot3D_order_parameters(rmsd_values,
ylabel='RMSD to reference ($\AA$)')

[28]: <Axes3DSubplot: xlabel='Pore coordinate $\\zeta$ ($\\AA$)', ylabel='RMSD to reference ($\
→˓\AA$)', zlabel='HOLE radius $R$ ($\\AA$)'>
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Deleting HOLE files

The HOLE program and related MDAnalysis code write a number of files out. Both the hole() function and
HoleAnalysis class contain ways to easily remove these files.

For hole(), pass in keep_files=False to delete HOLE files as soon as the analysis is done. However, this will also
remove the sphpdb file required to create a VMD surface from the analysis. If you need to write a VMD surface file,
use the HoleAnalysis class instead.

You can track the created files at the tmp_files attribute.

[29]: ha.tmp_files

[29]: ['simple2.rad',
'hole000.out',
'hole000.sph',
'hole001.out',
'hole001.sph',
'hole002.out',
'hole002.sph',
'hole003.out',
'hole003.sph',

(continues on next page)
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'hole004.out',
'hole004.sph',
'hole005.out',
'hole005.sph',
'hole006.out',
'hole006.sph',
'hole007.out',
'hole007.sph',
'hole008.out',
'hole008.sph',
'hole009.out',
'hole009.sph',
'hole010.out',
'hole010.sph']

The built-in method delete_temporary_files() will remove these.

[30]: ha.delete_temporary_files()
ha.tmp_files

[30]: []

Alternatively, you can use HoleAnalysis as a context manager. When you exit the block, the temporary files will be
deleted automatically.

[31]: with hole2.HoleAnalysis(u,
# executable='~/hole2/exe/hole',
) as ha2:
ha2.run()
ha2.create_vmd_surface(filename='holeanalysis.vmd')
ha2.plot()
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[32]: ha.profiles[0][0].radius

[32]: 20.0962
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Volumetric analyses

Computing mass and charge density on each axis

Here we compute the mass and charge density of water along the three cartesian axes of a fixed-volume unit cell (i.e.
from a simulation in the NVT ensemble).

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import waterPSF, waterDCD
from MDAnalysis.analysis import lineardensity as lin

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we are working with are a cube of water.

[2]: u = mda.Universe(waterPSF, waterDCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

MDAnalysis.analysis.lineardensity.LinearDensity (API docs) will partition each of your axes into bins of
user-specified binsize (in angstrom), and give the average mass density and average charge density of your atom
group selection.

This analysis is only suitable for a trajectory with a fixed box size. While passing a trajectory with a variable box size
will not raise an error, LinearDensity will not account for changing dimensions. It will only evaluate the density of
your atoms in the bins created from the trajectory frame when the class is first initialised.

Below, we iterate through the trajectory to verify that its box dimensions remain constant.

[3]: for ts in u.trajectory:
print(ts.dimensions)
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[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]

You can choose to compute the density of individual atoms, residues, segments, or fragments (groups of bonded atoms
with no bonds to any atom outside the group). By default, the grouping is for atoms.

[4]: density = lin.LinearDensity(u.atoms,
grouping='atoms').run()

The results of the analysis are in density.results.

[5]: density.nbins

[5]: 200

[6]: density.results['x']['mass_density']

[6]: array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.00053562, 0.00080344, 0.00876945, 0.03507781, 0.00107125,
0.00348155, 0.00241031, 0.02791523, 0.04277601, 0.0175389 ,
0.00160687, 0.00133906, 0.00026781, 0. , 0.00107125,
0.00107125, 0.00053562, 0. , 0.03400656, 0.0196814 ,
0.02339659, 0.0135559 , 0.00026781, 0.00107125, 0.00107125,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
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0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ])

[7]: density.results['x'].keys()

[7]: KeysView({'dim': 0, 'slice_volume': 625.0, 'mass_density': array([0. , 0. ,
→˓ 0. , 0. , 0. ,

0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.00053562, 0.00080344, 0.00876945, 0.03507781, 0.00107125,
0.00348155, 0.00241031, 0.02791523, 0.04277601, 0.0175389 ,
0.00160687, 0.00133906, 0.00026781, 0. , 0.00107125,
0.00107125, 0.00053562, 0. , 0.03400656, 0.0196814 ,
0.02339659, 0.0135559 , 0.00026781, 0.00107125, 0.00107125,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,

(continues on next page)
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0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ]), 'mass_density_stddev

→˓': array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.00107125, 0.00122727, 0.01688797, 0.01691979, 0.00177646,
0.00241031, 0.00279604, 0.02179554, 0.02689655, 0.02096112,
0.001312 , 0.00133906, 0.00080344, 0. , 0.001312 ,
0.001312 , 0.00107125, 0. , 0.01700328, 0.03402765,
0.02131476, 0.01957657, 0.00080344, 0.001312 , 0.001312 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ]), 'charge_density':␣

→˓array([ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,

(continues on next page)
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(continued from previous page)

0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.00022158, 0.00033237, -0.00033237, -0.00132949, 0.00044316,
0.00144029, 0.00099712, -0.00033237, -0.00210503, -0.00066475,
0.00066475, 0.00055396, 0.00011079, 0. , 0.00044316,
0.00044316, 0.00022158, 0. , -0.00177266, 0.00022158,
-0.00022158, -0.00033237, 0.00011079, 0.00044316, 0.00044316,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ]), 'charge_

→˓density_stddev': array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.00044316, 0.00050771, 0.00099712, 0.00108553, 0.00073491,
0.00099712, 0.00115669, 0.00111344, 0.00144029, 0.00112985,
0.00054276, 0.00055396, 0.00033237, 0. , 0.00054276,
0.00054276, 0.00044316, 0. , 0.00088633, 0.0018406 ,
0.00129204, 0.00111344, 0.00033237, 0.00054276, 0.00054276,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,

(continues on next page)
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(continued from previous page)

0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ]), 'hist_bin_edges':␣

→˓array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ,
2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,
4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 ,
6.75, 7. , 7.25, 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75,
9. , 9.25, 9.5 , 9.75, 10. , 10.25, 10.5 , 10.75, 11. ,
11.25, 11.5 , 11.75, 12. , 12.25, 12.5 , 12.75, 13. , 13.25,
13.5 , 13.75, 14. , 14.25, 14.5 , 14.75, 15. , 15.25, 15.5 ,
15.75, 16. , 16.25, 16.5 , 16.75, 17. , 17.25, 17.5 , 17.75,
18. , 18.25, 18.5 , 18.75, 19. , 19.25, 19.5 , 19.75, 20. ,
20.25, 20.5 , 20.75, 21. , 21.25, 21.5 , 21.75, 22. , 22.25,
22.5 , 22.75, 23. , 23.25, 23.5 , 23.75, 24. , 24.25, 24.5 ,
24.75, 25. , 25.25, 25.5 , 25.75, 26. , 26.25, 26.5 , 26.75,
27. , 27.25, 27.5 , 27.75, 28. , 28.25, 28.5 , 28.75, 29. ,
29.25, 29.5 , 29.75, 30. , 30.25, 30.5 , 30.75, 31. , 31.25,
31.5 , 31.75, 32. , 32.25, 32.5 , 32.75, 33. , 33.25, 33.5 ,
33.75, 34. , 34.25, 34.5 , 34.75, 35. , 35.25, 35.5 , 35.75,
36. , 36.25, 36.5 , 36.75, 37. , 37.25, 37.5 , 37.75, 38. ,
38.25, 38.5 , 38.75, 39. , 39.25, 39.5 , 39.75, 40. , 40.25,
40.5 , 40.75, 41. , 41.25, 41.5 , 41.75, 42. , 42.25, 42.5 ,
42.75, 43. , 43.25, 43.5 , 43.75, 44. , 44.25, 44.5 , 44.75,
45. , 45.25, 45.5 , 45.75, 46. , 46.25, 46.5 , 46.75, 47. ,
47.25, 47.5 , 47.75, 48. , 48.25, 48.5 , 48.75, 49. , 49.25,
49.5 , 49.75, 50. ], dtype=float32)})

[8]: density.results['y']['dim']

[8]: 1

[9]: plt.plot(np.linspace(0, 50, 200), density.results['x']['mass_density'])

[9]: [<matplotlib.lines.Line2D at 0x7f5d682b3b20>]
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Calculating the solvent density around a protein

Here we use density.DensityAnalysis to analyse the solvent density around an enzyme.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:
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• nglview

• matplotlib

• scikit-image

• pyvista

• ipygany

Throughout this tutorial we will include cells for visualising Universes with the NGLView library. However, these will
be commented out, and we will show the expected images generated instead of the interactive widgets.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
from MDAnalysis.analysis import density

import numpy as np
import matplotlib.pyplot as plt
# import nglview as nv
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]). It is solvated in TIP4P water and broken across periodic boundaries.

[2]: u = mda.Universe(TPR, XTC)

[3]: # view1 = nv.show_mdanalysis(u)
# view1.add_representation(
# 'licorice',
# selection='resname SOL',
# )
# view1

[4]: # from nglview.contrib.movie import MovieMaker
# movie = MovieMaker(
# view1,
# step=4, # keep every 4th step
# render_params={"factor": 3}, # average quality render
# output='density_analysis_images/density_analysis-view1.gif',
# )
# movie.make()
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Centering, aligning, and making molecules whole with on-the-fly transformations

DensityAnalysis uses a fixed grid to analyse the density of molecules. As it is likely that this grid may cross the unit
cell wall, this means that molecules that have broken across the periodic boundary must be made whole. Because we
want to analyse the density of water around a protein, this means:

• that the solvent must be mapped so they are closest to the protein, and

• we need to align the trajectory on the protein for a fixed frame of reference

In practice, the transformations that we need (in order) are shown in the table below. GROMACS’s trjconv is often used
to perform these transformations; the equivalent command is also given. MDAnalysis offers on-the-fly transformations
to accomplish much the same task; however, where trjconv saves the transformed trajectory into a file, MDAnalysis
does not alter the initial trajectory. Instead, it transforms each frame “on-the-fly” as it is loaded into MDAnalysis.

Transformation On-the-fly transforma-
tion

GROMACS trjconv ar-
gument

Making molecules whole wrap.unwrap() -pbc whole
Moving the protein to the center of the box for more sym-
metric density

translate.
center_in_box()

-center

Wrapping water back into the box wrap.wrap()
Aligning the trajectory onto the protein fit.fit_rot_trans() -fit rot+trans

We want wrap water back into the box before we fit the trajectory, in order to avoid odd placements from the rotation
in the alignment.

You can do this yourself with external tools such as gmx trjconv, using the arguments above. Here, we use on-the-fly
transformations so we can avoid writing out new trajectories.

[5]: from MDAnalysis import transformations as trans

protein = u.select_atoms('protein')
water = u.select_atoms('resname SOL')

workflow = [trans.unwrap(u.atoms), # unwrap all fragments
trans.center_in_box(protein, # move atoms so protein

center='geometry'), # is centered
trans.wrap(water, # wrap water back into box

compound='residues'), # keep each water whole
trans.fit_rot_trans(protein, # align protein to first frame

protein,
weights='mass'),

]

u.trajectory.add_transformations(*workflow)

When we visualise the transformed trajectory, we can see that it is now centered in the box and whole.

[6]: # view2 = nv.show_mdanalysis(u)
# view2.add_representation(
# 'licorice',
# selection='resname SOL',
# )
# view2
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[7]: # from nglview.contrib.movie import MovieMaker
# movie = MovieMaker(
# view2,
# step=4, # keep every 4th step
# render_params={"factor": 3}, # average quality render
# output='density_analysis_images/density_analysis-view2.gif',
# )
# movie.make()

Analysing the density of water around the protein

Now that the input trajectory has been pre-processed, we can carry out our analysis. We only want to look at the density
of numbers of water molecules, so we choose the oxygen atoms only (see LinearDensity for mass and charge density
analysis).

[8]: ow = u.select_atoms('name OW')
dens = density.DensityAnalysis(ow,

delta=4.0,
padding=2)

dens.run()

[8]: <MDAnalysis.analysis.density.DensityAnalysis at 0x1444979d0>

The results are stored in dens.density, a Density object. dens.density.grid is a numpy array with the average
density of the water oxygen atoms, histogrammed onto a grid with 1 spacing on each axis.

[9]: grid = dens.results.density.grid
grid.shape

[9]: (31, 42, 20)

When first calculated, these are in the default units of −3.

[10]: dens.results.density.units

[10]: {'length': 'Angstrom', 'density': 'Angstrom^{-3}'}

You can convert the units both for the length (convert_length) and for the density (convert_density). MDAnalysis
stores a number of precomputed ways to convert units. Densities can be converted to 𝑛𝑚−3, or converted to a density
relative to the bulk density. After executing the code below, the array at dens.density.grid now contains the density
of water relative to bulk TIP4P water at ambient positions.

[11]: dens.results.density.convert_density('TIP4P')
dens.results.density.units

[11]: {'length': 'Angstrom', 'density': 'TIP4P'}

208 Chapter 2. Participating



MDAnalysis User Guide

Visualisation

A number of 3D and 2D visualization methods are illustrated below.

matplotlib (3D static plot)

You may want to visualise your densities as part of your analysis. One trivial way is to plot the density of water around
the protein as a 3D scatter plot.

First we need to obtain the x, y, and z axes for the plot by taking the midpoints of the histogram bins. These are stored
as dens.density.midpoints.

[12]: mx, my, mz = dens.results.density.midpoints

In the plot below we represent the density of water in a particular bin with the opacity of the scatter point. To do that,
we need to first normalise the density values. In the flat vector below before, the highest opacity (i.e. the point with
the highest density of water oxygen atoms) is 0.1. The array is also flattened so we can treat it as a list of values.

[13]: grid = dens.results.density.grid
flat = grid.ravel() / (grid.max()*10)

We set the colour to an RGBA array representing the colour blue. The last number in an RGBA array represents the
alpha channel, which controls the opacity of the point.

[14]: blue = [44, 130, 201, 1]
colors = [blue] * len(mx) * len(my) * len(mz)
colors = np.array(colors, dtype=float)
colors[:, -1] *= flat
colors[:, :3] /= 255

Finally we can plot the points on a 3D plot. Axes3D must be imported for a 3D plot, even though we do not directly
use it. In this case, the plot is not very interesting; it just looks like a box of water.

[15]: from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x, y, z = np.meshgrid(mx, my, mz)

ax.scatter(x, y, z, c=colors)
plt.show()
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nglview (interactive)

You could also view the density in NGLView by exporting it to a DX format:

[16]: dens.results.density.export("water.dx")

Use the surface representation in NGLViewer to visualize the loaded density at different isolevels: - contour = False
shows a continuous surface (the default); True shows a wirefram - isolevel = float sets the contour level and
with isolevel_type="value" is in the units of the density - isolevel_type="value" for densities (the default is
“sigma”) and then isolevel has a different meanin - One can use multiple surfaces at different isolevels (although
the current example trajectory has too few frames to generate a well resolved density - smooth = float controls the
surface smoothing of the representation

[17]: # view3 = nv.show_mdanalysis(u)
# d = view3.add_component("water.dx")
# d.clear_representations()
# d.add_surface(isolevel=0.5, isolevel_type="value", opacity=0.1, contour=False,␣
→˓smooth=1, color="blue")
# d.add_surface(isolevel=1.2, isolevel_type="value", opacity=1, contour=True, smooth=1,␣
→˓color="cyan")

# view3
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scikit-image (triangulated surface)

You could use the Marching Cube (Lewiner) algorithm to triangulate the surface (following this tutorial and Stack-
Overflow post.

This will require the skimage library.

[18]: from skimage import measure
from mpl_toolkits.mplot3d import Axes3D

iso_val = 0.5
verts, faces, _, _ = measure.marching_cubes(dens.results.density.grid, iso_val,

spacing=dens.results.density.delta)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(verts[:, 0], verts[:,1], faces, verts[:, 2],

lw=1, alpha=0.1)
plt.show()
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pyvista (3D surface)

Similarly, using PyVista, you can plot both static and interactive visualizations of the surface at different iso levels
(following this StackOverflow post). Uncomment the last lines to show the plot in your local machine.

[19]: import pyvista as pv

pv.set_plot_theme("document")

x, y, z = np.meshgrid(mx, my, mz, indexing="ij")
mesh = pv.StructuredGrid(x, y, z)
mesh["density"] = dens.results.density.grid.T.flatten() # note transpose
contours = mesh.contour([0.5, 1.2])
p = pv.Plotter(notebook=True)
p.background_color = 'white'
p.add_mesh(mesh.outline(), color="k") # box lines
p.add_mesh(contours, opacity=0.2); # surfaces
# p.show()
# p.screenshot("./density_analysis_images/surface.png");

Unfortunately plotting interactively appears to render everything with opaque surfaces. Note that this code snippet
requires ipygany to be installed.
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[20]: p = pv.Plotter(notebook=True)
p.background_color = 'white'
p.add_mesh(mesh.outline(), color="k") # box lines
p.add_mesh(contours, opacity=0.2); # surfaces
# uncomment the below for interactivity
# p.show(jupyter_backend="ipygany")
# p.screenshot("./density_analysis_images/interactive-surface.png");

2D averaging

Alternatively, you could plot the average density of water on the xy-plane. We get the average x-y positions by averaging
over the z-axis.

[21]: avg = grid.mean(axis=-1)
avg.shape

[21]: (31, 42)

Below, it is plotted as a heat map.

[22]: fig, ax = plt.subplots()

im = ax.imshow(avg)
cbar = plt.colorbar(im)
cbar.set_label('Mean density of water over TIP4P literature value')
plt.xlabel('X-axis ($\AA$)')
plt.ylabel('Y-axis ($\AA$)')
plt.show()

2.1. Communications 213



MDAnalysis User Guide

You can interpolate values for a smoother average:

[23]: fig, ax = plt.subplots()

im = ax.imshow(avg, interpolation="bicubic")
cbar = plt.colorbar(im)
cbar.set_label('Mean density of water over TIP4P literature value')
plt.xlabel('X-axis ($\AA$)')
plt.ylabel('Y-axis ($\AA$)')
plt.show()
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2.1.5 MDAnalysis Release Notes

Release 2.6.1 of MDAnalysis

This is a bugfix release of the 2.6.x version branch of MDAnalysis, it serves as an amendment to the earlier released
version 2.6.0.

See the CHANGELOG for more details.

Bug fixes and changes

• Reverting the v2.6.0 behaviour, builds are now again made using the oldest supported NumPy version (NumPy
1.22.3 for Python 3.9-3.10, and 1.22.3 for Python 3.11) [PR #4261]

• Uses of numpy in1d have been replaced with isin in prepartion for NumPy 2.0 [PR #4255]

• Cython DEF statements have been replaced with compile time integer constants as DEF statements are now
deprecated in Cython 3.0 [Issue #4237, PR #4246]

• Fix to element guessing code to more accurately interpret atom names split by numbers (i.e. N0A is now recog-
nised as N rather than NA) [Issue #4167, PR #4168]

• Clarification of SurvivalProbability function documentation [Issue #4247, PR #4248]1

New Contributors

• @pillose made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4168

Release 2.6.0 of MDAnalysis

This a minor release of MDAnalysis.

This release of MDAnalysis is packaged under a GPLv3+ license, additionally all contributions made from commit
44733fc214dcfdcc2b7cb3e3705258781bb491bd onwards are made under the LGPLv2.1+ license. More details about
these license changes will be provided in an upcoming blog post.

The minimum supported NumPy version has been raised to 1.22.3 as per NEP29. Please note that package builds are
now made with NumPy 1.25+ which offer backwards runtime compatibility with NEP29 supported versions of NumPy.

Supported Python versions:

• 3.9, 3.10, 3.11

Major changes:

See the CHANGELOG and our release blog post for more details.
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Fixes:

• The -ffast-math compiler flag is no longer used by default at build time, avoiding inconsistent
(although still scientifically correct) results seen in Intel MacOS systems when calling `Atom-
Group.center_of_charge(. . . , unwrap=True). This also avoids potentially incorrect floating point results
as detailed here. (https://github.com/MDAnalysis/mdanalysis/pull/4220)

• DATAWriter, CRD, PQR, and PDBQT files can now be correctly written to compressed files. Before this change,
any attempt to write to a compressed format (gzip or bzip2) would lead to writing out an uncompressed file.
(https://github.com/MDAnalysis/mdanalysis/pull/4163)

• Prevent accidental merging of bond/angle/dihedral types when they are defined as LAMMPS style string integers
instead of tuples. This was leading to an incorrect number of bond/angle/dihedral types being written to lammps
data files. (https://github.com/MDAnalysis/mdanalysis/pull/4003)

Enhancements:

• An exclude_same argument has been added to InterRDF allowing pairs of atoms that share the same residue,
segment or chain to be excluded from the calculation. (https://github.com/MDAnalysis/mdanalysis/pull/4161)

• LAMMPS reader now supports the continuous ChainReader option.
(https://github.com/MDAnalysis/mdanalysis/pull/4170)

• AtomGroup representation now returns atom indices in the same order as they are stored in the AtomGroup.
(https://github.com/MDAnalysis/mdanalysis/pull/4191)

Changes:

• Package builds now use NumPy 1.25 or higher instead of the lowest supported NumPy version.
(https://github.com/MDAnalysis/mdanalysis/pull/4198)

• As per NEP29, the minimum supported runtime version of NumPy has been increased to 1.22.3.
(https://github.com/MDAnalysis/mdanalysis/pull/4160)

• The GSD package is now an optional dependency. (https://github.com/MDAnalysis/mdanalysis/pull/4174)

• The MDAnalysis package now only supports GSD versions 3.0.1 or above.
(https://github.com/MDAnalysis/mdanalysis/pull/4153)

• MDAnalysis no longer officially supports 32 bit installations. (they are no longer tested in our continu-
ous integration pipelines). Note: no code changes have been made to disable 32 bit, although it is known
that new versions of most MDAnalysis core dependencies no longer release 32 bit compatible versions.
(https://github.com/MDAnalysis/mdanalysis/pull/4176)

• The package license has been updated to GPLv3+ to better reflect the compatibility of GPLv2+
with Apache and GPLv3 licensed codes. Additionally all new contributions from commit
44733fc214dcfdcc2b7cb3e3705258781bb491bd onwards are made under the LGPLv2.1+ license.
(https://github.com/MDAnalysis/mdanalysis/pull/4219)
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Deprecations:

• The misspelt Boltzman_constant entry in MDAnalysis.units is now deprecated in favour the
correctly spelt Boltzmann_constant. (https://github.com/MDAnalysis/mdanalysis/pull/4230 and
https://github.com/MDAnalysis/mdanalysis/pull/4214)

• MDAnalysis.analysis.hole2 is now deprecated in favour of a new HOLE2 MDAKit.
(https://github.com/MDAnalysis/mdanalysis/pull/4200)

New Contributors

• @MohitKumar020291 made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4182

• @Shubx10 made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4184

• @ztimol made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4191

Release 2.5.0 of MDAnalysis

This a minor release of MDAnalysis.

The minimum Python version has been raised to 3.9 and NumPy to 1.21.0 as per NEP29. We also now package wheels
for both linux and osx arm64 machines on PyPi.

Supported Python versions:

• 3.9, 3.10, 3.11

Major changes:

See the CHANGELOG and our release blog post for more details.

Fixes:

• Fixed an issue where transformations were not being properly applied to Universes with multiple trajectories (i.e.
using the ChainReader) (Issue #3657 #4008 PR #3906)

• Fixed an issue with the the heavy distance_type for WaterBridgeAnalysis where distance was not correctly
assigned when more than one hydrogen was bonded to a heavy atom (Issue #4040, PR #4066).

• PDB topology parser no longer fails when encountering unknown formal charges and instead simply does not
populate attribute (Issue #4027)

• Fixed an issue where using the between keyword of HydrogenBondAnalysis led to incorrect donor-atom
distances being returned (PR #4092, Issue #4091)

• Fixed an issue where chi1_selections() ignored atom names CG1 OG OG1 SG and incorrectly returned None for
amino acids CYS, ILE, SER, THR, VAL (Issue #4108, PR #4109)

• Fix H5MD reader to read box vectors rather than returning None as the dimensions (Issue #4075, PR #4076)

• Fix to allow reading NetCDF trajectories which do not have the time variable defined (Issue #4073, PR #4074)

• Allows shape_parameter and asphericity to yield per residue quantities (Issue #3002, PR #3905)

• Fix EDRReader failing when parsing single-frame EDR files (Issue #3999)
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• Add ‘PairIJ Coeffs’ to the list of sections in LAMMPSParser.py (Issue #3336)

• PDBReader now defaults atom values for ts.data[‘occupancy’] to 0.0, rather than the previous default of 1.0.
This now matches the default used when setting Universe Topology attributes using the first frame’s information
(PR #3988)

Enchancements:

• ARM64 (osx and linux) wheels are now provided via PyPi (Issue #4054)

• Addition of a new analysis class analysis.atomicdistances.AtomicDistances to provide distances be-
tween two atom groups over a trajectory. (Issue #3654, PR #4105)

• Add kwarg n_frames to class method empty() in MDAnalysis.core.universe, enabling creation of a blank
Universe with multiple frames (PR #4140)

• PDBReader now populates ts.data[‘tempfactor’] with the tempfactor for each atom for each frame. If an entry is
missing for a given atom, this will default to a 1.0 value. Note, this does not affect the topology, i.e. AtomGroup.
tempfactors is not dynamically updated. (Issue #3825, PR #3988)

• Add writing u.trajectory.ts.data[‘molecule_tag’] as molecule tags to LAMMPS data file (Issue #3548)

• Add progressbar_kwargs parameter to AnalysisBase.runmethod, allowing to modify description, position
etc of tqdm progressbars. (PR #4085)

• Add a nojump transformation, which unwraps trajectories so that particle paths are continuous. (Issue #3703,
PR #4031)

• Added AtomGroup TopologyAttr to calculate gyration moments (Issue #3904, PR #3905)

• Add support for TPR files produced by Gromacs 2023 (Issue #4047)

• Add distopia distance calculation library bindings as a selectable backend for calc_bonds in MDA.lib.
distances. (Issue #3783, PR #3914)

• AuxReaders are now pickle-able and copy-able (Issue #1785, PR #3887)

• Add pickling support for Atom, Residue, Segment, ResidueGroup and SegmentGroup. (PR #3953)

Changes:

• As per NEP29 the minimum supported Python version has been raised to 3.9 and NumPy has been raised to 1.21
(note: in practice later versions of NumPy may be required depending on your architecture, operating system, or
Python version) (PRs #4115 and #3983).

• Add progress bars to track the progress of mds.EinsteinMSD _conclude() methods (_conclude_simple() and
_conclude_fft()) (Issue #4070, PR #4072)

• The deprecated direct indexing and times from the results attribute of analysis.nucleicacids’ NucPairDist and
WatsonCrickDist classes has been removed. Please use the results.pair_distances and times attributes
instead (Issue #3744)

• RDKitConverter changes (part of Issue #3996):

– moved some variables (MONATOMIC_CATION_CHARGES and STANDARDIZATION_REACTIONS) out of the
related functions to allow users fine tuning them if necessary.

– changed the sorting of heavy atoms when inferring bond orders and charges: previously only based on the
number of unpaired electrons, now based on this and the number of heavy atom neighbors.
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– use RDKit’s RunReactantInPlace for the standardization reactions, which should result in a signifi-
cant speed improvement as we don’t need to use bespoke code to transfer atomic properties from the non-
standardized mol to the standardized one.

New Contributors

• @mglagolev made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/3959

• @chrispfae made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4009

• @ooprathamm made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4010

• @MeetB7 made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4022

• @v-parmar made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4032

• @MoSchaeffler made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4049

• @jandom made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4043

• @xhgchen made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4037

• @DrDomenicoMarson made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4074

• @AHMED-salah00 made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4059

• @schlaicha made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4076

• @jvermaas made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4031

• @SophiaRuan made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4072

• @marinegor made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4085

• @g2707 made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4089

• @DanielJamesEvans made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/4109

Release 2.4.3 of MDAnalysis

This is a bugfix release of the 2.4.x version of MDAnalysis, it serves as an amendment to the earlier released version
2.4.2.

Bug fixes

• Fixed DCD reading for large (>2Gb) files (Issue #4039). This was broken for versions 2.4.0, 2.4.1 and 2.4.2.

• Fix element parsing from PSF files tests read via Parmed (Issue #4015)
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Release 2.4.2 of MDAnalysis

This is a bugfix release of the 2.4.x version of MDAnalysis, it serves as an amendment to the earlier released version
2.4.1.

Bug fixes

• Fixed an issue where the arguments passed to np.histogramdd in MDAnalysis.analysis.DensityAnalysis
were not compatible with the 1.24 release of NumPy (PR #3976)

• Fixed upcoming incompatibilities with NumPy 1.25 in MDAnalysis.visualization.streamlines_3D and
MDAnalysis.visualization.streamlineswhere incorrect comparison of the truth of arrays would have led
to failures (PR #3977)

Release 2.4.1 of MDAnalysis

This is a bugfix release of the 2.4.x version of MDAnalysis, it serves as an amendment to the earlier released version
2.4.0.

Bug fixes

• The minimum version of biopython has been raised to 1.80 for pip installs

• pytng has been added as an optional dependency

Release 2.4.0 of MDAnalysis

This a minor release of MDAnalysis, as per our once-every-three-months schedule.

The minimum NumPy and Python versions remain largely unchanged, however the minimum version of biopython
has been raised to 1.80. This is also the first release to officially support Python 3.11.

Supported Python versions:

• 3.8, 3.9, 3.10, 3.11

Major changes:

See the CHANGELOG and our release blog post for more details.

Fixes:

Enchancements:

• As part of their outreachy project @umak has started adding type annotations throughout the MDAnalysis code-
base

• As part of their GSoC project @BFedder has added an auxialliary reader for EDR files (PR #3749)

• As part of their GSoC project @aya9aladdin has fixed various issues with guessing and and attribute reading.
This will be followed by the introduction of a new guesser system in a future release.
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• A reader for TNG files has been added by @hmacdope, follow up on his previous GSoC 2020 work on creating
a python library for reading TNG files (PR 3765)

• Addition of a new isolayer selection method (PR #3846)

• Various enchancements and fixes to the LAMMPS DUMP Parser (allowing box translation on reading, allowing
coordinates to be unwrapped based on dump image flags, and importing of forces and velocities) (PR #3844)

• All readers now have a timeseries attribute (PR #3890)

• ReaderBase file formats now accept pathlib inputs (PR #3935)

• Added ability for hbond analysis to use types when resnames are not present (PR #3848)

Changes:

• The deprecated setup.py extra_requires AMBER entry has been removed in favor of extra_formats (PR
#3810)

• Various issues with the auxilliary reader, this should not be much more robust (PR #3749)

• The Cython headers have been moved to MDAnalysis.lib.libmdanalysis (PR #3913)

• The MDAnalysis.analysis.align.sequence_alignment now uses Bio.Align.PairwiseAligner instead of
the deprecated Bio.pairwise2 (PR #3951)

Deprecations:

• The MemoryReader’s timeseries inclusive indexing will be changed to exclusive in version 3.0.0 (PR #3894)

• The sequence_aligment() method has been deprecated and will be removed in version 3.0.0 (PR #3951)

• MDAnalysis.analysis.nucleicacids’ direct indexing of selection indices to obtain pair distances results has been
deprecated in favor of accessing results.pair_distances (PR #3958)

New Contributors

• @jaclark5 made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/3846

• @pgbarletta made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/3876

• @jfennick made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/3832

• @Hakarishirenai made their first contribution in https://github.com/MDAnalysis/mdanalysis/pull/3956

Release 2.3.0 of MDAnalysis

This a minor release of MDAnalysis, as per our once-every-three-months schedule.

The minimum NumPy version has been raised to 1.20.0 (1.21 for macosx-arm64) in line with NEP29.

Supported python versions:

• 3.8, 3.9, 3.10
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Major changes:

See the CHANGELOG and our release blog post for more details.

Fixes:

• Fixed reading error when dealing with corrupt PDB CONECT records, and an issue where MDAnalysis would
write out unusable CONECT records with index>100000 (Issue #988).

Enhancements:

• Formal charges are now read from PDB files and stored in a formalcharge attribute (PR #3755).

• A new normalizing norm parameter for the InterRDF and InterRDF_s analysis methods (Issue #3687).

• Improved Universe serialization performance (Issue #3721, PR #3710).

Changes:

• To install optional packages for different file formats supported by MDAnalysis, use pip install ./
package[extra_formats] (Issue #3701, PR #3711).

Deprecations:

• The extra_requires target AMBER for pip install ./package[AMBER] will be removed in 2.4.0. Use
extra_formats (Issue #3701, PR #3711).

CZI EOSS Performance Improvements:

A series of performance improvements to the MDAnalysis library’s backend have been made as per planned work under
MDAnalysis’ CZI EOSS4 grant. Further details about these will be provided in a future blog post.

• MDAnalysis.lib.distances now accepts AtomGroups as well as NumPy arrays (PR #3730).

• Timestep has been converted to a Cython Extension type (PR #3683).

Release 2.2.0 of MDAnalysis

In line with NEP29, this version of MDAnalysis drops support for Python 3.7 and raises the minimum NumPy version
to 1.19.0. Minimum version support has also been changed for the following packages; networkx>=2.0, scipy>=1.
5.0, gsd>=1.9.3. Further details on MDAnalysis future support strategy and NEP29 will be released shortly.

Supported python versions:

• 3.8, 3.9, 3.10
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Major changes:

See the CHANGELOG and our release blog post for more changes and details.

Enhancements:

• The frames argument was added to AnalysisBase-derived classes (i.e. modern analysis classes) allowing for
specific frames to be defined when running an analysis. (PR #3415)

• DL_POLY classic HISTORY files are now supported (Issue #3678)

• Python wheels are now made available through PyPI for x86_64 architectures (Issue #1300, PR #3680)

• Added a center_of_charge attribute for AtomGroups (PR #3671)

• LinearDensity now work with UpdatingAtomGroups (Issue #2508, PR #3617)

• Addition of a PCA transformation and an associated inverse-PCA transformation was added to the PCA analysis
class (PR #3596, Issue #2703)

• Major improvements to the RDKitConverter’s accuracy (PR #3044)

– Accuracy of 99.14% when benchmarked against ChEMBL30

– AtomGroups containing monatomic ion charges and edge cases with nitrogen, sulfur, phosphorus and con-
jugated systems should now have correctly assigned bond orders and charges.

• Addition of a new AnalysisBase derived Watson-Crick distance analysis class (PR #3611)

Fixes:

• Fixed issues where calling the copy method of Readers did not preserve optional arguments (Issue #3664, PR
#3685)

• Fixed several issues where iterating trajectories had undefined behaviour

– Iterating (not in memory) SingleFrame readers now reset modified trajectory attributes (Issue #3423)

– Iterating using defined indices did not rewind the trajectory (Issue #3416)

• Fixed issues with competing processes writing to an XTC offset file leading to offset corruption (Issue #1988,
PR #3375)

• Fixed issue preventing OpenMMTopologyParsers from parsing systems with missing elements (Issue #3317, PR
#3511)

• Fixed issue with encore.covariance.covariance_matrix not working when providing an external reference (Issue
#3539, PR #3621)

• Fixed issue with broken code paths for “residues” and “segment” groupings for LinearDensity (Issue #3571, PR
#3572)

• Improved the flexibility of MOL2 reading, allowing for optional columns (subst_id, subst_name and charge)
not to be provided (Issue #3385, PR #3598)

• Fixed several issues related to converting AtomGroups to RDKit molecules (PR #3044):

– Atoms are now in the same order

– atom.GetMonomerInfor().GetName() now follows the guidelines for PDB files

– Using NoImplicit=False no longer throws a SanitizationError
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• Fixed issues with incorrect reading of triclinic boxes from DUMP files (Issue #3386, PR #3403)

• Fixed issue with the BAT method modifying input coordinate data (Issue #3501)

Changes:

• The number of matches allowed when doing a smarts selection has been increased from the default 1000 to
max(1000, n_atoms * 10), an additional set of smarts_kwargs can now also be passed to override this behaviour
(Issue #3469, PR #3470)

• The fasteners package is now a core dependency (PR #3375)

• LinearDensity now saves the histogram bin edges for easier plotting as `hist_bin_edges for each dimension in the
results dictionary (Issue #2508, PR #3617)

• ContactAnalysis now accepts AtomGroups (Issue #2666, PR #3565)

Deprecations:

• The following results attribute for LinearDensity are now deprecated: (Issue #2508, PR #3617)

– pos is now mass_density

– char is now charge_density

– std entries are now stddev

Known test failures:

• Windows builds

– In some cases users may get permission errors with tests involving symlinks. This should not impact
the behaviour of MDAnalysis but may impact the creation of temporary files when using HOLE2 (see:
https://github.com/MDAnalysis/mdanalysis/issues/3556).

Release 2.1.0 of MDAnalysis

In line with ongoing attempts to align with NEP29, this version of MDAnalysis drops support for Python 3.6 and raises
the minimum NumPy version to 1.18.0.

Please note that at time of release whilst all the MDAnalysis core functionality supports Python 3.10, some optional
modules do not due to a lack of support by dependencies which they require. We hope that this support will gradually
be added as more of these dependencies release new versions compatible with Python 3.10.

Supported python versions:

• 3.7, 3.8, 3.9, 3.10
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Major changes:

See the CHANGELOG and our release blog post for more changes and details.

Enhancements:

• Addition of a new dielectric analysis module (PR #2118)

• The TPR parser now supports reading files from GROMACS 2022 (PR #3514)

• The H5MDReader can now load trajectories without a topology (PR #3466)

• Custom compiler flags can be used when building MDAnalysis from source (PR #3429)

• The RDKit reader now supports parsing R/S chirality (PR #3445)

• A new method to apply the minimum image convention to a collection of vectors, minimize_vectors, has been
introduced (PR #3472)

Fixes:

• Fixed various integer overflow issues in the distance calculation backend of MDAnalysis which would prevent
calculations on large systems (Issues #3183, #3512).

• Fixed issues with the creation of VMD surfaces in HOLE2 when using a non-contiguous start/stop/step.

• Fixes reading of charges with the ITPParser (Issue #3419).

• Fixed issue with the creation of a Universe from a custom object which only provides a topology (Issue #3443).

• Fixed issue with accessing newly created values added via add_Segment or add_Residue (Issue #3437).

Changes:

• packaging is now a core dependency of MDAnalysis.

• Indexing a Group (AtomGroup, ResidueGroup, SegmentGroup) with None now raises a TypeError. Prior to
this indexing by None would incorrectly return the whole Group but claim to have a length of 1 atom (Issue
#3092).

• The TRZReader now defaults to a dt value of 1.0 ps instead of the previous 0.0 ps (Issue #3257).

Deprecations:

• The pbc keyword argument for various Group methods has been deprecated in favor of wrap. The deprecated
keyword will be removed in version 3.0.0 (Issue #1760).
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Known test failures:

• pytest-xdist and more than 4 workers

– Under these conditions a test related to logging for HydrogenBondAnalysis can fail.
This is not thought to impact the validity of MDAnalysis. See here for more details:
https://github.com/MDAnalysis/mdanalysis/issues/3543

• Windows builds

– In some cases users may get permission errors with tests involving symlinks. This should not impact
the behaviour of MDAnalysis but may impact the creation of temporary files when using HOLE2 (see:
https://github.com/MDAnalysis/mdanalysis/issues/3556).

Release 2.0.0 of MDAnalysis

This is the first version of MDAnalysis to solely support python 3.6+

Supported python versions:

• 3.6, 3.7, 3.8, 3.9

Please note that starting with the next minor version, MDAnalysis will be following NEP29.

Notes:

• This is a major release and introduces major advertised API breaks. Caution is advised when upgrading to 2.0.0.

Major changes:

Enhancements:

• LAMMPSDumpReader can now read coordinates in all different LAMMPS coordinate conventions (Issue
#3358)

• New Results class for storing analysis results (Issue #3115)

• New OpenMM coordinate and topology converters (Issue #2863, PR #2917)

• New intra_bonds,intra_angles, intra_dihedrals, etc. . . methods to return connections involve atoms
within AtomGroups instead of including atoms outside of it (Issue #1264, #2821, PR #3200)

• Support for Groamcs 2021 TPR files (Issue #3180)

• Adds preliminary support for ppc64le and aarch64 [ARM] (Issue #3127, PR #2956 #3149)

• New selection operators (Issue #3054, PR #2927)

• New refactor of helix analysis class as analysis.helix_analysis (Issue #2452)

• New converter between RDKit molecules and MDAnalysis AtomGroup objects (Issue #2468). Also includes
from_smiles Universe generator method, and the aromatic and smarts selection.

• New analysis method for calculating Mean Squared Dsiplacements (Issue #2438)

• New converter between Cartesian and Bond-Angle-Torsion coordinates (PR #2668)

• Universes and readers can now be pickled paving the way to easier parallel analyses (Issue #2723)

• New H5MDReader and H5MDWriter (Issue #762, #2866)

2.1. Communications 227

https://numpy.org/neps/nep-0029-deprecation_policy.html


MDAnalysis User Guide

Fixes:

• Fixes an issue where select_atom, AtomGroup.unique, ResidueGroup.unique, and SegmentGroup.unique did
not sort the output atoms (Issues #3364 #2977)

• GRO files now only support unit cells defined with 3 or 9 entries (Issue #3305)

• Fixes the sometimes wrong sorting of atoms into fragments when unwrapping (Issue #3352)

• Fixes issue when atttempting to use/pass mean positions to PCA analysis (Issue #2728)

• Fixes support for DL_POLY HISTORY files that contain cell information even if there are no periodic boundary
conditions (Issue #3314)

• Fixes issue with WaterBridgeAnalysis double counting waters (Issue #3119)

• PDBWriter will use chainID instead of segID (Issue #3144)

• PDBParser and PDBWriter now assign and use the element attribute (Issues #3030 #2422)

• AtomGroup.center now works correctly for compounds + unwrapping (Issue #2984)

• Documents and fixes the density keyword for rdf.InterRDF_s (Isuse #2811)

• Fixed Janin analysis residue filtering, including CYSH (Issue #2898)

Changes:

• New converter API for all MDAnalysis converters under MDAnalysis.converters

• Timestep now stores information in ‘C’ memory layout instead of the previous ‘F’ default (PR #1738)

• hbonds.hbond_analysis has been remove din favour of hydrogenbonds.hbond_analysis (Issues #2739,
#2746)

• TPRParser now loads TPR files with tpr_resid_from_one=True by deafult, which starts TPR resid indexing
from 1 (instead of 0 as in previous MDAnalysis versions) (Issue #2364, PR #3152)

• analysis.hole has now been removed in favour of analysis.hole2.hole (Issue #2739)

• Writer.write(Timestep) and Writer.write_next_timestep have been removed. Please use write()
instead (Issue #2739)

• Removes deprecated density_from_Universe, density_from_PDB, Bfactor2RMSF, and
notwithin_coordinates_factory from MDAnalysis.analysis.density (Issue #2739)

• Changes the minimum numpy supported version to 1.16.0 (Issue #2827)

• Removes deprecated waterdynamics.HydrogenBondLifetimes (PR #2842)

• hbonds.WaterBridgeAnalysis has been moved to hydrogenbonds.WaterBridgeAnalysis (Issue #2739
PR #2913)
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Deprecations:

• The bfactors attribute is now aliased to tempfactors and will be removed in 3.0.0 (Issue #1901)

• WaterBridgeAnalysis.generate_table() now returns table information, with the table attribute being
deprecated

• Various analysis result attributes which are now stored in Results will be deprecated in 3.0.0 (Issue #3261)

• In 3.0.0 the ParmEd classes will only be accessible from the MDAnalysis.converters module

• In 2.1.0 the TRZReader will default to a dt of 1.0 ps when failing to read it from the input TRZ trajectory

See the CHANGELOG for more changes and details.

Known issues:

• Windows builds

– For some compilers (seen on MVC v.19xx), differences in floating point precision leads to PBC wrapping
differing from expected outcomes. This leads to failures in the MDAnalysisTests.lib.test_augment
tests. To our knowledge this does not significantly affect results (as all other tests pass). We will aim to fix
this in version 2.1.0.

2.1.6 Universe

If you wish to make an apple pie from scratch, you must first invent the universe.

—Carl Sagan, Cosmos

MDAnalysis is structured around two fundamental classes: the Universe and the AtomGroup. Almost all code in
MDAnalysis begins with Universe, which contains all the information describing a molecular dynamics system.

It has two key properties:

• atoms: an AtomGroup of the system’s atoms, providing access to important analysis methods (described below)

• trajectory: the currently loaded trajectory reader

A Universe ties the static information from the “topology” (e.g. atom identities) to dynamically updating information
from the “trajectory” (e.g. coordinates). A key feature of MDAnalysis is that an entire trajectory is not loaded into
memory (unless the user explicitly does so with MemoryReader). Instead, the trajectory attribute provides a view
on a specific frame of the trajectory. This allows the analysis of arbitrarily long trajectories without a significant impact
on memory.

Creating a Universe

Loading from files

A Universe is typically created from a “topology” file, with optional “trajectory” file/s. Trajectory files must have the
coordinates in the same order as atoms in the topology. See Formats for the topology and trajectory formats supported
by MDAnalysis, and how to load each specific format.

u = Universe(topology, trajectory)
u = Universe(pdbfile) # read atoms and coordinates from PDB or GRO
u = Universe(topology, [traj1, traj2, ...]) # read from a list of trajectories
u = Universe(topology, traj1, traj2, ...) # read from multiple trajectories
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The line between topology and trajectory files is quite blurry. For example, a PDB or GRO file is considered both a
topology and a trajectory file. The difference is that a topology file provides static information, such as atom iden-
tities (name, mass, etc.), charges, and bond connectivity. A trajectory file provides dynamic information, such as
coordinates, velocities, forces, and box dimensions.

If only a single file is provided, MDAnalysis tries to read both topology and trajectory information from it. When
multiple trajectory files are provided, coordinates are loaded in the order given.

The default arguments should create a Universe suited for most analysis applications. However, the Universe con-
structor also takes optional arguments.

The following options specify how to treat the input:
• format: the file format of the trajectory file/s. (default: None, formats are guessed)

• topology_format: the file format of the topology file. (default: None, formats are guessed)

• all_coordinates: whether to read coordinate information from the first file (default: False. Ignored when
only one file is provided)

• continuous: whether to give multiple trajectory files continuous time steps. This is currently only supported
for XTC/TRR trajectories with a GRO/TPR topology, following the behaviour of gmx trjcat (default: False.)

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB, GRO, XTC

In [3]: u1 = mda.Universe(GRO, XTC, XTC, all_coordinates=True)

In [4]: u1.trajectory
Out[4]: <ChainReader containing adk_oplsaa.gro, adk_oplsaa.xtc, adk_oplsaa.xtc with 21␣
→˓frames of 47681 atoms>

In [5]: u2 = mda.Universe(GRO, XTC, XTC, all_coordinates=False, continuous=False)

In [6]: print([int(ts.time) for ts in u2.trajectory])
[0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 0, 100, 200, 300, 400, 500, 600, 700,␣
→˓800, 900]

The following options modify the created Universe:
• guess_bonds: whether to guess connectivity between atoms. (default: False)

• vdwradii: a dictionary of {element: radius} of van der Waals’ radii for use in guessing bonds.

• transformations: a function or list of functions for on-the-fly trajectory transformation.

• in_memory: whether to load coordinates into memory (default: False)

• in_memory_step: only read every nth frame into an in-memory representation. (default: 1)

• is_anchor: whether to consider this Universe when unpickling AtomGroups (default: True)

• anchor_name: the name of this Universe when unpickling AtomGroups (default: None, automatically generated)

You can also pass in keywords for parsing the topology or coordinates. For example, many file formats do not specify
the timestep for their trajectory. In these cases, MDAnalysis assumes that the default timestep is 1 ps. If this is incorrect,
you can pass in a dt argument to modify the timestep. This does not modify timesteps for formats that include time
information.
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In [7]: from MDAnalysis.tests.datafiles import PRM, TRJ

In [8]: default_timestep = mda.Universe(PRM, TRJ)

In [9]: default_timestep.trajectory.dt
Out[9]: 1.0

In [10]: user_timestep = mda.Universe(PRM, TRJ, dt=5) # ps

In [11]: user_timestep.trajectory.dt
Out[11]: 5

Constructing from AtomGroups

A new Universe can be created from one or more AtomGroup instances with Merge(). The AtomGroup instances can
come from different Universes, meaning that this is one way to concatenate selections from different datasets.

For example, to combine a protein, ligand, and solvent from separate PDB files:

u1 = mda.Universe("protein.pdb")
u2 = mda.Universe("ligand.pdb")
u3 = mda.Universe("solvent.pdb")
u = Merge(u1.select_atoms("protein"), u2.atoms, u3.atoms)
u.atoms.write("system.pdb")

Constructing from scratch

A Universe can be constructed from scratch with Universe.empty. There are three stages to this process:

1. Create the blank Universe with specified number of atoms. If coordinates, set trajectory=True.

2. Add topology attributes such as atom names.

3. (Optional) Load coordinates.

For example, to construct a universe with 6 atoms in 2 residues:

In [12]: u = mda.Universe.empty(6, 2, atom_resindex=[0, 0, 0, 1, 1, 1], trajectory=True)

In [13]: u.add_TopologyAttr('masses')

In [14]: coordinates = np.empty((1000, # number of frames
....: u.atoms.n_atoms,
....: 3))
....:

In [15]: u.load_new(coordinates, order='fac')
Out[15]: <Universe with 6 atoms>

See this notebook tutorial for more information.
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Guessing topology attributes

MDAnalysis can guess two kinds of information. Sometimes MDAnalysis guesses information instead of reading it
from certain file formats, which can lead to mistakes such as assigning atoms the wrong element or charge. See the
available topology parsers for a case-by-case breakdown of which atom properties MDAnalysis guesses for each format.
See Guessing for how attributes are guessed, and Default values and attribute levels for which attributes have default
values.

Universe properties and methods

A Universe holds master groups of atoms and topology objects:

• atoms: all Atoms in the system, in an AtomGroup.

• residues: all Residues in the system

• segments: all Segments in the system

• bonds: all bond TopologyObjects in the system

• angles: all angle TopologyObjects in the system

• dihedrals: all dihedral TopologyObjects in the system

• impropers: all improper TopologyObjects in the system

Residues and Segments are chemically meaningful groups of Atoms.

Modifying a topology is typically done through the Universe, which contains several methods for adding properties:

• add_TopologyAttr()

• add_Residue()

• add_Segment()

See Topology attributes for more information on which topology attributes can be added, and exam-
ples/constructing_universe.ipynb for examples on adding attributes and Segments.

2.1.7 AtomGroup

A Universe contains all particles in the molecular system. MDAnalysis calls a particle an Atom, regardless of whether
it really is (e.g. it may be a united-atom particle or coarse-grained bead). Atoms are grouped with an AtomGroup; the
‘master’ AtomGroup of a Universe is accessible at Universe.atoms.

Note: The AtomGroup is probably the most important object in MDAnalysis. Virtually everything can be accessed
through an AtomGroup.
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Creating an AtomGroup

Atom selection language

AtomGroup instances are typically created with Universe.select_atoms or by manipulating another AtomGroup,
e.g. by slicing.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB

In [3]: u = mda.Universe(PDB)

In [4]: u.select_atoms('resname ARG')
Out[4]: <AtomGroup with 312 atoms>

See Atom selection language for more information.

Indexing and slicing

An AtomGroup can be indexed and sliced like a list:

In [5]: print(u.atoms[0])
<Atom 1: N of type N of resname MET, resid 1 and segid SYSTEM and altLoc >

Slicing returns another AtomGroup. The below code returns an AtomGroup of every second element from the first to
the 6th element, corresponding to indices 0, 2, and 4.

In [6]: ag = u.atoms[0:6:2]

In [7]: ag.indices
Out[7]: array([0, 2, 4])

MDAnalysis also supports fancy indexing: passing a ndarray or a list.

In [8]: indices = [0, 3, -1, 10, 3]

In [9]: u.atoms[indices].indices
Out[9]: array([ 0, 3, 47680, 10, 3])

Boolean indexing allows you to pass in an array of True or False values to create a new AtomGroup from another.
The array must be the same length as the original AtomGroup. This allows you to select atoms on conditions.

In [10]: arr = u.atoms.resnames == 'ARG'

In [11]: len(arr) == len(u.atoms)

In [12]: arr
Out[12]: Out[11]: array([False, False, False, ..., False, False, False])

In [13]: u.atoms[arr]
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Group operators and set methods

MDAnalysis supports a number of ways to compare AtomGroups or construct a new one: group operators (e.g.
concatenate(), subtract()) and set methods (e.g. union(), difference()). Group operators achieve a sim-
ilar outcome to set methods. However, a key difference is that concatenate() and subtract() preserve the order
of the atoms and any duplicates. union() and difference() return an AtomGroup where each atom is unique, and
ordered by its topology index.

In [14]: ag1 = u.atoms[1:6]

In [15]: ag2 = u.atoms[8:3:-1]

In [16]: concat = ag1 + ag2

In [17]: concat.indices
Out[17]: array([1, 2, 3, 4, 5, 8, 7, 6, 5, 4])

In [18]: union = ag1 | ag2

In [19]: union.indices
Out[19]: array([1, 2, 3, 4, 5, 6, 7, 8])

Available operators
Unlike set methods and atom selection language, concatenation and subtraction keep the order of the atoms as well as
duplicates.

Operation Equivalent Result
len(s) number of atoms in the group
s == t test if s and t contain the same elements in the same order
s.concatenate(t) s + t new Group with elements from s and from t
s.subtract(t) new Group with elements from s that are not in t

Available set methods
Each of these methods create groups that are sorted sets of unique Atoms.

Operation Equivalent Result
s.isdisjoint(t) True if s and t do not share elements
s.issubset(t) test if all elements of s are part of t
s.is_strict_subset(t) test if all elements of s are part of t, and s != t
s.issuperset(t) test if all elements of t are part of s
s.is_strict_superset(t) test if all elements of t are part of s, and s != t
s.union(t) s | t new Group with elements from both s and t
s.intersection(t) s & t new Group with elements common to s and t
s.difference(t) s - t new Group with elements of s that are not in t
s.symmetric_difference(t) s ^ t new Group with elements that are part of s or t but not both

234 Chapter 2. Participating

https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.concatenate
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.subtract
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.union
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.difference
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.concatenate
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.subtract
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.union
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.difference
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom


MDAnalysis User Guide

Groupby and split

An AtomGroup can be constructed from another by separating atoms by properties.

AtomGroup.split can create a list of AtomGroups by splitting another AtomGroup by the ‘level’ of connectivity: one
of atom, residue, molecule, or segment.

In [20]: ag1 = u.atoms[:100]

In [21]: ag1.split('residue')
Out[21]:
[<AtomGroup with 19 atoms>,
<AtomGroup with 24 atoms>,
<AtomGroup with 19 atoms>,
<AtomGroup with 19 atoms>,
<AtomGroup with 19 atoms>]

An AtomGroup can also be separated according to values of topology attributes to produce a dictionary of {value:
AtomGroup}.

In [22]: u.atoms.groupby('masses')
Out[22]:
{32.06: <AtomGroup with 7 atoms>,
1.008: <AtomGroup with 23853 atoms>,
0.0: <AtomGroup with 11084 atoms>,
12.011: <AtomGroup with 1040 atoms>,
14.007: <AtomGroup with 289 atoms>,
15.999: <AtomGroup with 11404 atoms>,
22.98977: <AtomGroup with 4 atoms>}

Passing in multiple attributes groups them in order:

In [23]: u.select_atoms('resname SOL NA+').groupby(['masses', 'resnames'])
Out[23]:
{(0.0, 'SOL'): <AtomGroup with 11084 atoms>,
(1.008, 'SOL'): <AtomGroup with 22168 atoms>,
(22.98977, 'NA+'): <AtomGroup with 4 atoms>,
(15.999, 'SOL'): <AtomGroup with 11084 atoms>}

Constructing from Atoms

An AtomGroup can be created from an iterable of Atom instances:

In [24]: atom1 = u.atoms[4]

In [25]: atom2 = u.atoms[6]

In [26]: atom3 = u.atoms[2]

In [27]: ag = mda.AtomGroup([atom1, atom2, atom3])

In [28]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc >,

(continues on next page)
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(continued from previous page)

→˓<Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >, <Atom 3:␣
→˓H2 of type H of resname MET, resid 1 and segid SYSTEM and altLoc >]>

A neat shortcut for this is to simply add an Atom to another Atom or AtomGroup:

In [29]: ag = atom1 + atom2

In [30]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc >,
→˓<Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >]>

In [31]: ag += atom3

In [32]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc >,
→˓<Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >, <Atom 3:␣
→˓H2 of type H of resname MET, resid 1 and segid SYSTEM and altLoc >]>

An alternative method is to provide a list of indices and the Universe that the Atoms belong to:

In [33]: ag = mda.AtomGroup([4, 6, 2], u)

In [34]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc >,
→˓<Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >, <Atom 3:␣
→˓H2 of type H of resname MET, resid 1 and segid SYSTEM and altLoc >]>

Order and uniqueness

These methods of creating an AtomGroup result in a sorted, unique list of atoms:

• Atom selection language

• Slicing

• Boolean indexing

• Set methods

• AtomGroup.split and AtomGroup.groupby

These methods return a user-ordered AtomGroup that can contain duplicates:

• Fancy indexing (with arrays or lists)

• Group operations (AtomGroup.concatenate and AtomGroup.subtract)

• Constructing directly from Atoms
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Empty AtomGroups

MDAnalysis can also work with empty AtomGroups:

In [35]: null = u.atoms[[]]

In [36]: null
Out[36]: <AtomGroup with 0 atoms>

The above is the same as creating an AtomGroup from an empty list and a Universe.

In [37]: mda.AtomGroup([], u)
Out[37]: <AtomGroup with 0 atoms>

Each method of creating an AtomGroup can also be used to create an empty one. For example, using selection language:

In [38]: u.select_atoms("resname DOES_NOT_EXIST")
Out[38]: <AtomGroup with 0 atoms>

and indexing:

In [39]: u.atoms[6:6]
Out[39]: <AtomGroup with 0 atoms>

or set methods:

In [40]: u.atoms - u.atoms
Out[40]: <AtomGroup with 0 atoms>

Empty AtomGroups have a length of 0 and evaluate to False in a boolean context.

In [41]: bool(null)
Out[41]: False

This allows analysis methods to skip over empty AtomGroups instead of raising an error, which is helpful as occasion-
ally empty AtomGroups can arise from selection logic that is too restrictive (e.g. geometric selections).

Dynamically updating AtomGroups

A normal AtomGroup is static, and the atoms within it do not change as the trajectory frame changes. Several methods
require dynamically updating AtomGroups. These are typically created using atom selection language. See Dynamic
selections for more information.

Methods

Most of the analysis functionality in MDAnalysis is implemented in the analysis module, but many interesting methods
can be accessed from an AtomGroup directly. For example, Bonds, Angles, Dihedrals and ImproperDihedrals can be
created from AtomGroups. Providing that required topology attributes are present, a number of analysis methods are
also available to a AtomGroup, ResidueGroup, and SegmentGroup.
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2.1.8 Groups of atoms

MDAnalysis has a hierarchy of Atom containers that are used throughout the code.

First and foremost is the AtomGroup. An AtomGroup is the primary Atom container; virtually everything can be
accessed through it, as detailed in AtomGroup. This includes chemically meaningful groups of Atoms such as a Residue
or a Segment.

Residues and Segments

A Residue is composed of Atoms, and a Segment is composed of Residues.

The corresponding container groups are ResidueGroup and SegmentGroup. These have similar properties and avail-
able methods as AtomGroup.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import TPR, XTC

In [3]: u = mda.Universe(TPR, XTC)

In [4]: ag = u.atoms.select_atoms('resname ARG and name CA')

In [5]: ag
Out[5]: <AtomGroup with 13 atoms>

Each of these container groups can be accessed through another. The behaviour of this differs by level. For example,
the residues of the ag are the residues that the atoms of ag belong to.

In [6]: ag.residues
Out[6]: <ResidueGroup with 13 residues>

Accessing the atoms of those residues, however, returns all the atoms in the residues, not just those originally in ag.

In [7]: ag.residues.atoms
Out[7]: <AtomGroup with 312 atoms>

The same applies to segments.

In [8]: ag[:3].segments.atoms
Out[8]: <AtomGroup with 3341 atoms>

Similarly, an Atom has direct knowledge of the Residue and Segment it belongs to. Note that an Atom belongs to one
Residue and the residue belongs to one Segment, but a Segment has multiple residues.
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In [9]: a = u.atoms[0]

In [10]: a.residue
Out[10]: <Residue LYSH, 0>

In [11]: a.residue.segment
Out[11]: <Segment seg_0_Protein_A>

In [12]: a.residue.segment.residues
Out[12]: <ResidueGroup with 129 residues>

For information on adding custom Residues or Segments, have a look at Adding a Residue or Segment to a Universe.

Access to other classes via the AtomGroup object can be pretty powerful, but also needs to be used with caution to
avoid accessing data outside the intended selection. Therefore, we present two use cases showing commonly used
applications, for which we define Universe on a simple extract from the PDB file:

In [9]: import MDAnalysis as mda

In [10]: import io

In [11]: pdb = io.StringIO("""
....: ATOM 414 N GLY A 402 -51.919 9.578 -14.287 1.00 68.46 N
....: ATOM 415 CA GLY A 402 -52.405 10.954 -14.168 1.00 68.41 C
....: ATOM 416 C GLY A 402 -51.821 11.946 -15.164 1.00 69.71 C
....: ATOM 417 O GLY A 402 -51.958 13.159 -14.968 1.00 69.61 O
....: ATOM 418 H GLY A 402 -52.551 8.935 -14.743 1.00 0.00 H
....: ATOM 419 HA3 GLY A 402 -52.225 11.313 -13.155 1.00 0.00 H
....: ATOM 420 HA2 GLY A 402 -53.492 10.960 -14.249 1.00 0.00 H
....: TER
....: HETATM 1929 N1 XYZ A 900 -40.275 19.399 -28.239 1.00 0.00 N1+
....: TER
....: ATOM 1029 N ALA B 122 -25.408 19.612 -13.814 1.00 37.52 N
....: ATOM 1030 CA ALA B 122 -26.529 20.537 -14.038 1.00 37.70 C
....: ATOM 1031 C ALA B 122 -26.386 21.914 -13.374 1.00 45.35 C
....: ATOM 1032 O ALA B 122 -26.885 22.904 -13.918 1.00 48.34 O
....: ATOM 1033 CB ALA B 122 -27.835 19.889 -13.613 1.00 37.94 C
....: ATOM 1034 H ALA B 122 -25.636 18.727 -13.385 1.00 0.00 H
....: ATOM 1035 HA ALA B 122 -26.592 20.707 -15.113 1.00 0.00 H
....: ATOM 1036 HB1 ALA B 122 -28.658 20.583 -13.783 1.00 0.00 H
....: ATOM 1037 HB2 ALA B 122 -27.998 18.983 -14.196 1.00 0.00 H
....: ATOM 1038 HB3 ALA B 122 -27.788 19.635 -12.554 1.00 0.00 H
....: ATOM 1039 N GLY B 123 -25.713 21.969 -12.223 1.00 41.18 N
....: ATOM 1040 CA GLY B 123 -25.550 23.204 -11.460 1.00 41.40 C
....: ATOM 1041 C GLY B 123 -24.309 24.018 -11.745 1.00 45.74 C
....: ATOM 1042 O GLY B 123 -24.349 25.234 -11.601 1.00 46.81 O
....: ATOM 1043 H GLY B 123 -25.290 21.133 -11.845 1.00 0.00 H
....: ATOM 1044 HA3 GLY B 123 -25.593 22.976 -10.395 1.00 0.00 H
....: ATOM 1045 HA2 GLY B 123 -26.430 23.831 -11.600 1.00 0.00 H
....: TER
....: """)
....:

In [12]: u = mda.Universe(pdb, format="PDB")
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Use case: Sequence of residues by segment

In order to select only ATOM record types and get a list of residues by segment, one needs to call:

In [13]: residues_by_seg = list()

In [14]: for seg in u.segments:
....: p_seg = seg.atoms.select_atoms("record_type ATOM")
....: residues_by_seg.append(p_seg.residues)
....:

Residue names can be extracted using Python’s list comprehensions. As required, HETATM record type lines are not
considered:

In [15]: [rg.resnames for rg in residues_by_seg]
Out[15]: [array(['GLY'], dtype=object), array(['ALA', 'GLY'], dtype=object)]

Note that accessing residues by first selecting the segments of an AtomGroup returns all the residues in that segment
for both the ATOM and HETATM record types (no memory of the original selection). The meaning of this is: “give
me all residue names from segments in which there is at least one of the selected atoms”.

In [16]: selected_atoms = u.select_atoms("record_type ATOM")

In [17]: all_residues = selected_atoms.segments.residues

In [18]: all_residues.resnames
Out[18]: array(['GLY', 'XYZ', 'ALA', 'GLY'], dtype=object)

Use case: Atoms list grouped by residues

In order to list all the heavy protein backbone and sidechain atoms in every residue, one needs to call:

In [19]: atoms_in_residues = list()

In [20]: for seg in u.segments:
....: p_seg = seg.atoms.select_atoms("record_type ATOM and not name H*")
....: for p_res in p_seg.residues:
....: atoms_in_residues.append(p_seg.select_atoms(f"resid {p_res.resid} and␣

→˓resname {p_res.resname}"))
....:

Atom names can be extracted using Python’s list comprehensions. As required, HETATM record type lines and hydro-
gen atoms are not considered:

In [21]: [ag.names for ag in atoms_in_residues]
Out[21]:
[array(['N', 'CA', 'C', 'O'], dtype=object),
array(['N', 'CA', 'C', 'O', 'CB'], dtype=object),
array(['N', 'CA', 'C', 'O'], dtype=object)]

The Python syntax can be further simplified by using split() function:
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In [22]: rds = u.select_atoms("record_type ATOM and not name H*").split("residue")

In [23]: [ag.names for ag in rds]
Out[23]:
[array(['N', 'CA', 'C', 'O'], dtype=object),
array(['N', 'CA', 'C', 'O', 'CB'], dtype=object),
array(['N', 'CA', 'C', 'O'], dtype=object)]

Note that accessing atoms by first selecting the residues of an AtomGroup also returns hydrogen atoms (no memory of
the original selection). The meaning of this is “give me all atom names from residues in which there is at least one of
the selected atoms”. However, it doesn’t contain a nitrogen atom from XYZ residue as no atoms from this residue were
in the AtomGroup.

In [24]: all_atoms_in_residues = list()

In [25]: for seg in u.segments:
....: p_seg = seg.atoms.select_atoms("record_type ATOM and not name H*")
....: all_atoms_in_residues.append(p_seg.residues)
....:

In [26]: [atom.names for atom in all_atoms_in_residues]
Out[26]:
[[array(['N', 'CA', 'C', 'O', 'H', 'HA3', 'HA2'], dtype=object)],
[array(['N', 'CA', 'C', 'O', 'CB', 'H', 'HA', 'HB1', 'HB2', 'HB3'],

dtype=object),
array(['N', 'CA', 'C', 'O', 'H', 'HA3', 'HA2'], dtype=object)]]

Fragments

Certain analysis methods in MDAnalysis also make use of additional ways to group atoms. A key concept is a fragment.
A fragment is what is typically considered a molecule: an AtomGroup where any atom is reachable from any other
atom in the AtomGroup by traversing bonds, and none of its atoms is bonded to any atoms outside the AtomGroup.
(A ‘molecule’ in MDAnalysis methods refers to a GROMACS-specific concept). The fragments of a Universe are
determined by MDAnalysis as a derived quantity. They can only be determined if bond information is available.

The fragments of an AtomGroup are accessible via the fragments property. Below is a Universe from a GROMACS
TPR file of lysozyme (PDB ID: 2LYZ) with 101 water molecules. While it has 230 residues, there are only 102
fragments: 1 protein and 101 water fragments.

In [27]: from MDAnalysis.tests.datafiles import TPR2021

In [28]: u = mda.Universe(TPR2021)

In [29]: len(u.residues)
Out[29]: 230

In [30]: len(u.atoms.fragments)
Out[30]: 102

See Topology objects for more on bonds and which file formats give MDAnalysis bond information.

You can also look at which fragment a particular Atom belongs to:
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In [31]: u.atoms[0].fragment # first atom of lysozyme
Out[31]: <AtomGroup with 1960 atoms>

and see which fragments are associated with atoms in a smaller AtomGroup:

In [32]: u.atoms[1959:1961].fragments
Out[32]: (<AtomGroup with 1960 atoms>, <AtomGroup with 3 atoms>)

Note: AtomGroup.fragments returns a tuple of fragments with at least one Atom in the AtomGroup, not a tuple of
fragments where all Atoms are in the AtomGroup.

2.1.9 Atom selection language

AtomGroups can be created by selecting atoms using the MDAnalysis atom selection language:

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF, DCD

In [3]: u = mda.Universe(PSF, DCD)

In [4]: ala = u.select_atoms('resname ALA')

In [5]: ala
Out[5]: <AtomGroup with 190 atoms>

The select_atoms() method of a AtomGroup or a Universe returns an AtomGroup. These two methods have differ-
ent behaviour: while Universe.select_atoms operates on all the atoms in the universe, AtomGroup.select_atoms
only operates on the atoms within the original AtomGroup. A single selection phrase always returns an AtomGroup
with atoms sorted according to their index in the topology. This is to ensure that there are not any duplicates, which
can happen with complicated selections. When order matters, you can pass in multiple phrases.

This page documents selection keywords and their arguments. select_atoms() also accepts keywords that modify
the behaviour of the selection string and the resulting AtomGroup (documented further down this page). For example,
you can:

• Pass in named AtomGroups as arguments:

In [6]: sph_6 = u.select_atoms("sphzone 6 protein")

In [7]: u.select_atoms("around 3 group sph_6", sph_6=sph_6)
Out[7]: <AtomGroup with 81 atoms>

• Turn off periodic boundary conditions for geometric keywords with periodic=False:

In [8]: u.select_atoms("around 6 protein", periodic=False)
Out[8]: <AtomGroup with 0 atoms>

• Create dynamic UpdatingAtomGroups with updating=True:
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In [9]: u.select_atoms("prop x < 5 and prop y < 5 and prop z < 5", updating=True)
Out[9]: <AtomGroup with 917 atoms, with selection 'prop x < 5 and prop y < 5 and prop z
→˓< 5' on the entire Universe.>

It is possible to export selections for external software packages with the help of Selection exporters.

Selection Keywords

The following describes all selection keywords currently understood by the selection parser. The following applies to
all selections:

• Keywords are case sensitive.

• Atoms are automatically sequentially ordered in a resulting selection (see notes below on Ordered selections for
how to circumvent this if necessary).

• Selections are parsed left to right and parentheses can be used for grouping. For example:

In [10]: u.select_atoms("segid DMPC and not (name H* or type OW)")
Out[10]: <AtomGroup with 0 atoms>

• String selections such as names and residue names can be matched with Unix shell-style wildcards. These rules
include:

– Using * in a string matches any number of any characters

– ? matches any single character

– [seq] matches any character in seq;

– [!seq] matches any character not in seq

– [!?] selects empty strings

For example, the string GL* selects all strings that start with “GL”, such as “GLU”, “GLY”, “GLX29”, “GLN”.
GL[YN] will select all “GLY” and “GLN” strings. Any number of patterns can be included in the search. For
more information on pattern matching, see the fnmatch documentation.

Simple selections

protein
Selects atoms that belong to a hard-coded set of standard protein residue names.

backbone
Selects the backbone atoms of a hard-coded set of protein residues. These atoms have the names: CA, C, O, N.

nucleic
Selects atoms that belong to a hard-coded set of standard nucleic residue names.

nucleicbackbone
Selects the backbone atoms of a hard-coded set of nucleic residues. These atoms have the names: P, O5’, C5’,
C3’, O3’

nucleicbase
Selects the atoms in nucleobases.

nucleicsugar
Selects the atoms in nucleic sugars. These have the names: C1’, C2’, C3’, C4’, O2’, O4’, O3’
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segid seg-name
select by segid (as given in the topology), e.g. segid 4AKE or segid DMPC

resid residue-number-range
resid can take a single residue number or a range of numbers, followed by insertion codes. A range consists of
two selections separated by a colon (inclusive) such as resid 1A:1C. This selects all residues with resid==1
and icode in ('A', 'B', 'C'). A residue number (“resid”) and icode is taken directly from the topology.
Unlike resnum, resid is sensitive to insertion codes.

resnum residue-number-range
resnum can take a single residue number or a range of numbers. A range consists of two numbers separated
by a colon (inclusive) such as resnum 1:5. A residue number (“resnum”) is taken directly from the topology.
Unlike resid, resnum is insensitive to insertion codes.

resname residue-name
select by residue name, e.g. resname LYS

name atom-name
select by atom name (as given in the topology). Often, this is force field dependent. Example: name CA (for
C-alpha atoms) or name OW (for SPC water oxygen)

type atom-type
select by atom type; this is either a string or a number and depends on the force field; it is read from the topology
file (e.g. the CHARMM PSF file contains numeric atom types). This uses the Atom.type topology attribute.

atom seg-name residue-number atom-name
a selector for a single atom consisting of segid resid atomname, e.g. DMPC 1 C2 selects the C2 carbon of the
first residue of the DMPC segment

altloc alternative-location
a selection for atoms where alternative locations are available, which is often the case with high-resolution crystal
structures e.g. resid 4 and resname ALA and altloc B selects only the atoms of ALA-4 that have an
altloc B record.

icode icode
a selector for atoms where insertion codes are available. This can be combined with residue numbers using the
resid selector above. e.g. icode [!?] selects atoms without insertion codes.

moltype molecule-type
select by the moltype topology attribute, e.g. moltype Protein_A. At the moment, only the TPR format
defines the moltype.

Boolean

not
all atoms not in the selection, e.g. not protein selects all atoms that aren’t part of a protein

and
the intersection of two selections, i.e. the boolean and. e.g. protein and not resname ALA selects all atoms
that belong to a protein but are not in an alanine residue

or
the union of two selections, i.e. the boolean or. e.g. protein and not (resname ALA or resname LYS)
selects all atoms that belong to a protein, but are not in a lysine or alanine residue
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Geometric

The geometric keywords below all implement periodic boundary conditions by default when valid cell dimensions are
accessible from the Universe. This can be turned off by passing in the keyword periodic=False:

In [11]: u.select_atoms("around 6 protein", periodic=False)
Out[11]: <AtomGroup with 0 atoms>

around distance selection
selects all atoms a certain cutoff away from another selection, e.g. around 3.5 protein selects all atoms not
belonging to protein that are within 3.5 Angstroms from the protein

sphzone externalRadius selection
selects all atoms within a spherical zone centered in the center of geometry (COG) of a given selection, e.g.
sphzone 6.0 ( protein and ( resid 130 or resid 80 ) ) selects the center of geometry of protein,
resid 130, resid 80 and creates a sphere of radius 6.0 around the COG.

sphlayer innerRadius externalRadius selection
selects all atoms within a spherical layer centered in the center of geometry (COG) of a given selection, e.g.,
sphlayer 2.4 6.0 ( protein and ( resid 130 or resid 80 ) ) selects the center of geometry of
protein, resid 130, resid 80 and creates a spherical layer of inner radius 2.4 and external radius 6.0 around the
COG.

cyzone externalRadius zMax zMin selection
selects all atoms within a cylindric zone centered in the center of geometry (COG) of a given selection, e.g.
cyzone 15 4 -8 protein and resid 42 selects the center of geometry of protein and resid 42, and creates
a cylinder of external radius 15 centered on the COG. In z, the cylinder extends from 4 above the COG to 8 below.
Positive values for zMin, or negative ones for zMax, are allowed.

cylayer innerRadius externalRadius zMax zMin selection
selects all atoms within a cylindric layer centered in the center of geometry (COG) of a given selection, e.g.
cylayer 5 10 10 -8 protein selects the center of geometry of protein, and creates a cylindrical layer of
inner radius 5, external radius 10 centered on the COG. In z, the cylinder extends from 10 above the COG to 8
below. Positive values for zMin, or negative ones for zMax, are allowed.

point x y z distance
selects all atoms within a cutoff of a point in space, make sure coordinate is separated by spaces, e.g. point
5.0 5.0 5.0 3.5 selects all atoms within 3.5 Angstroms of the coordinate (5.0, 5.0, 5.0)

prop [abs] property operator value
selects atoms based on position, using property x, y, or z coordinate. Supports the abs keyword (for absolute
value) and the following operators: <, >, <=, >=, ==, !=. For example, prop z >= 5.0 selects all atoms with
z coordinate greater than 5.0; prop abs z <= 5.0 selects all atoms within -5.0 <= z <= 5.0.

Similarity and connectivity

same subkeyword as selection
selects all atoms that have the same subkeyword value as any atom in selection. Allowed subkeyword values
are the atom properties: name, type, resname, resid, resnum, segid, mass, charge, radius,
bfactor, the groups an atom belong to: residue, segment, fragment, and the atom coordinates x, y,
z. (Note that bfactor currently only works for MMTF formats.) e.g. same charge as protein selects all
atoms that have the same charge as any atom in protein.

byres selection
selects all atoms that are in the same segment and residue as selection, e.g. specify the subselection after the
byres keyword. byres is a shortcut to same residue as
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bonded selection
selects all atoms that are bonded to selection e.g.: name H and bonded name N selects only hydrogens bonded
to nitrogens

Index

index index-range
selects all atoms within a range of (0-based) inclusive indices, e.g. index 0 selects the first atom in the universe;
index 5:10 selects the 6th through 11th atoms, inclusive. This uses the Atom.index topology attribute.

bynum number-range
selects all atoms within a range of (1-based) inclusive indices, e.g. bynum 1 selects the first atom in the universe;
bynum 5:10 selects 5th through 10th atoms, inclusive.

Note: These are not the same as the 1-indexed Atom.id topology attribute. bynum simply adds 1 to the 0-
indexed Atom.index.

Preexisting selections and modifiers

group group-name
selects the atoms in the AtomGroup passed to the function as an argument named group-name. Only the atoms
common to group-name and the instance select_atoms() was called from will be considered, unless group
is preceded by the global keyword. group-name will be included in the parsing just by comparison of atom
indices. This means that it is up to the user to make sure the group-name group was defined in an appropriate
Universe.

global selection
by default, when issuing select_atoms() from an AtomGroup, selections and subselections are returned inter-
sected with the atoms of that instance. Prefixing a selection term with global causes its selection to be returned
in its entirety. As an example, the global keyword allows for lipids.select_atoms("around 10 global
protein")— where lipids is a group that does not contain any proteins. Were global absent, the result would
be an empty selection since the protein subselection would itself be empty. When calling select_atoms()
from a Universe, global is ignored.

Dynamic selections

By default select_atoms() returns an AtomGroup, in which the list of atoms is constant across trajectory frame
changes. If select_atoms() is invoked with named argument updating set to True, an UpdatingAtomGroup
instance will be returned instead.

# A dynamic selection of corner atoms:
In [12]: ag_updating = u.select_atoms("prop x < 5 and prop y < 5 and prop z < 5",␣
→˓updating=True)

In [13]: ag_updating
Out[13]: <AtomGroup with 917 atoms, with selection 'prop x < 5 and prop y < 5 and prop z
→˓< 5' on the entire Universe.>

It behaves just like an AtomGroup object, with the difference that the selection expressions are re-evaluated every time
the trajectory frame changes (this happens lazily, only when the UpdatingAtomGroup object is accessed so that there
is no redundant updating going on):
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In [14]: u.trajectory.next()
Out[14]: < Timestep 1 with unit cell dimensions [ 0. 0. 0. 90. 90. 90.] >

In [15]: ag_updating
Out[15]: <AtomGroup with 923 atoms, with selection 'prop x < 5 and prop y < 5 and prop z
→˓< 5' on the entire Universe.>

Using the group selection keyword for Preexisting selections and modifiers, one can make updating selections de-
pend on AtomGroup, or even other UpdatingAtomGroup, instances. Likewise, making an updating selection from an
already updating group will cause later updates to also reflect the updating of the base group:

In [16]: chained_ag_updating = ag_updating.select_atoms("resid 1:1000", updating=True)

In [17]: chained_ag_updating
Out[17]: <AtomGroup with 923 atoms, with selection 'resid 1:1000' on another AtomGroup.>

In [18]: u.trajectory.next()
Out[18]: < Timestep 2 with unit cell dimensions [ 0. 0. 0. 90. 90. 90.] >

In [19]: chained_ag_updating
Out[19]: <AtomGroup with 921 atoms, with selection 'resid 1:1000' on another AtomGroup.>

Finally, a non-updating selection or a slicing/addition operation made on an UpdatingAtomGroup will return a static
AtomGroup, which will no longer update across frames:

In [20]: static_ag = ag_updating.select_atoms("resid 1:1000")

In [21]: static_ag
Out[21]: <AtomGroup with 921 atoms>

In [22]: u.trajectory.next()
Out[22]: < Timestep 3 with unit cell dimensions [ 0. 0. 0. 90. 90. 90.] >

In [23]: static_ag
Out[23]: <AtomGroup with 921 atoms>

Ordered selections

select_atoms() sorts the atoms in the AtomGroup by atom index before returning them (this is to eliminate possible
duplicates in the selection). If the ordering of atoms is crucial (for instance when describing angles or dihedrals) or if
duplicate atoms are required then one has to concatenate multiple AtomGroups, which does not sort them.

The most straightforward way to concatenate two AtomGroups is by using the + operator:

In [14]: ordered = u.select_atoms("resid 3 and name CA") + u.select_atoms("resid 2 and␣
→˓name CA")

In [15]: list(ordered)
Out[15]:
[<Atom 46: CA of type 22 of resname ILE, resid 3 and segid 4AKE>,
<Atom 22: CA of type 22 of resname ARG, resid 2 and segid 4AKE>]

A shortcut is to provide two or more selections to select_atoms(), which then does the concatenation automatically:
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In [16]: list(u.select_atoms("resid 3 and name CA", "resid 2 and name CA"))
Out[16]:
[<Atom 46: CA of type 22 of resname ILE, resid 3 and segid 4AKE>,
<Atom 22: CA of type 22 of resname ARG, resid 2 and segid 4AKE>]

Just for comparison to show that a single selection string does not work as one might expect:

In [17]: list(u.select_atoms("(resid 3 or resid 2) and name CA"))
Out[17]:
[<Atom 22: CA of type 22 of resname ARG, resid 2 and segid 4AKE>,
<Atom 46: CA of type 22 of resname ILE, resid 3 and segid 4AKE>]

2.1.10 The topology system

MDAnalysis groups static data about a Universe into its topology. This is typically loaded from a topology file.
Topology information falls into 3 categories:

• Atom containers (Residues and Segments)

• Atom attributes (e.g. name, mass, tempfactor)

• Topology objects: bonds, angles, dihedrals, impropers

Users will almost never interact directly with a Topology. Modifying atom containers or topology attributes is typically
done through Universe. Methods for viewing containers or topology attributes, or for calculating topology object
values, are accessed through AtomGroup.

Topology attributes

MDAnalysis supports a range of topology attributes for each Atom and AtomGroup. If an attribute is defined for an
Atom, it will be for an AtomGroup, and vice versa – however, they are accessed with singular and plural versions of
the attribute specifically.

Canonical attributes

These attributes are derived for every Universe, including Universes created with empty(). They encode the MD-
Analysis order of each object.

Atom AtomGroup Description
index indices MDAnalysis canonical atom index (from 0)
resindex resindices MDAnalysis canonical residue index (from 0)
segindex segindices MDAnalysis segment index (from 0)

The following attributes are read or guessed from every format supported by MDAnalysis.
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Atom AtomGroup Description
id ids atom serial (from 1, except PSF/DMS/TPR formats)
mass masses atom mass (guessed, default: 0.0)
resid resids residue number (from 1, except for TPR)
resnum resnums alias of resid
segid segids names of segments (default: ‘SYSTEM’)
type types atom name, atom element, or force field atom type

Format-specific attributes

The table below lists attributes that are read from supported formats. These can also be added to a Universe created
from a file that does not support them.

Connectivity information

MDAnalysis can also read connectivity information, if the file provides it. These become available as Topology objects,
which have additional functionality.

Adding TopologyAttrs

Each of the attributes above can be added to a Universe if it was not available in the file with add_TopologyAttr().

add_TopologyAttr() takes two arguments:

• topologyattr : the singular or plural name of a TopologyAttr, or a MDAnalysis TopologyAttr object. This
must already have been defined as a TopologyAttr (see Adding custom TopologyAttrs for an example of adding
a custom topology attribute).

• values (optional) : if topologyattr is a string, the values for that attribute. This can be None if the attribute
has default values defined, e.g. tempfactors.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF

In [3]: psf = mda.Universe(PSF)

In [4]: hasattr(psf.atoms, 'tempfactors')
Out[4]: False

In [5]: psf.add_TopologyAttr('tempfactors')

In [6]: psf.atoms.tempfactors
Out[6]: array([0., 0., 0., ..., 0., 0., 0.])

One way to modify topology attributes is to simply replace them with add_TopologyAttr():

In [7]: psf.add_TopologyAttr('tempfactors', range(len(psf.atoms)))

In [8]: psf.atoms.tempfactors
Out[8]:

(continues on next page)
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(continued from previous page)

array([0.000e+00, 1.000e+00, 2.000e+00, ..., 3.338e+03, 3.339e+03,
3.340e+03])

The number of values provided should correspond with the “level” of the attribute. For example, B-factors are atomic-
level information. However, residue names and residue ids apply to residues. See a table of attribute levels and default
values for more information.

Modifying TopologyAttrs

Existing topology attributes can be directly modified by assigning new values.

In [9]: import MDAnalysis as mda

In [10]: from MDAnalysis.tests.datafiles import PDB

In [11]: pdb = mda.Universe(PDB)

In [12]: pdb.residues[:3].resnames
Out[12]: array(['MET', 'ARG', 'ILE'], dtype=object)

In [13]: pdb.residues[:3].resnames = ['RES1', 'RES2', 'RES3']

In [14]: pdb.residues[:3].atoms.resnames
Out[14]:
array(['RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1',

'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1',
'RES1', 'RES1', 'RES1', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2',
'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2',
'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2',
'RES2', 'RES2', 'RES2', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3',
'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3',
'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3'], dtype=object)

Note: This method cannot be used with connectivity attributes, i.e. bonds, angles, dihedrals, and impropers.

Similarly to adding topology attributes with add_TopologyAttr(), the “level” of the attribute matters. Residue
attributes can only be assigned to attributes at the Residue or ResidueGroup level. The same applies to attributes
for Atoms and Segments. For example, we would get a NotImplementedError if we tried to assign resnames to an
AtomGroup.

In [15]: pdb.residues[0].atoms.resnames = ['new_name']

NotImplementedErrorTraceback (most recent call last)
<ipython-input-15-0f99b0dc5f49> in <module>
----> 1 pdb.residues[0].atoms.resnames = ['new_name']
...
NotImplementedError: Cannot set resnames from AtomGroup. Use 'AtomGroup.residues.
→˓resnames = '
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Default values and attribute levels

Topology information in MDAnalysis is always associated with a level: one of atom, residue, or segment. For example,
indices is Atom information, resindices is Residue information, and segindices is Segment information. Many
topology attributes also have default values, so that they can be added to a Universe without providing explicit values,
and expected types. The table below lists which attributes have default values, what they are, and the information level.

Topology objects

MDAnalysis defines four types of TopologyObject by connectivity:

• Bond

• Angle

• Dihedral

• ImproperDihedral

The value of each topology object can be calculated with value().

Each TopologyObject also contains the following attributes:

• atoms : the ordered atoms in the object

• indices : the ordered atom indices in the object

• type : this is either the ‘type’ of the bond/angle/dihedral/improper, or a tuple of the atom types.

• is_guessed : MDAnalysis can guess bonds. This property records if the object was read from a file or guessed.

Groups of these are held in TopologyGroups. The master groups of TopologyObjects are accessible as properties of
a Universe. TopologyObjects are typically read from a file with connectivity information (see the supported formats
here). However, they can be created in two ways: by adding them to a Universe, or by creating them from an AtomGroup.
Bonds can be guessed based on distance and Van der Waals’ radii with AtomGroup.guess_bonds.

Adding to a Universe

As of version 0.21.0, there are specific methods for adding TopologyObjects to a Universe:

• add_Bonds()

• add_Angles()

• add_Dihedrals()

• add_Impropers()

These accept the following values:

• a TopologyGroup

• an iterable of atom indices

• an iterable of TopologyObjects

Prior to version 0.21.0, objects could be added to a Universe with add_TopologyAttr().

In [15]: hasattr(pdb, 'angles')
Out[15]: False

(continues on next page)
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(continued from previous page)

In [16]: pdb.add_TopologyAttr('angles', [(0, 1, 2), (2, 3, 4)])

In [17]: pdb.angles
Out[17]: <TopologyGroup containing 2 angles>

Both of these methods add the new objects to the associated master TopologyGroup in the Universe.

Creating with an AtomGroup

An AtomGroup can be represented as a bond, angle, dihedral angle, or improper angle TopologyObject through the
respective properties:

• bond

• angle

• dihedral

• improper

The AtomGroup must contain the corresponding number of atoms, in the desired order. For example, a bond cannot
be created from three atoms.

In [18]: pdb.atoms[[3, 4, 2]].bond

ValueErrorTraceback (most recent call last)
<ipython-input-21-e59c36ab66f4> in <module>
----> 1 pdb.atoms[[3, 4, 2]].bond
...
ValueError: bond only makes sense for a group with exactly 2 atoms

However, the angle Atom 2 —– Atom 4 —— Atom 3 can be calculated, even if the atoms are not connected with bonds.

In [18]: a = pdb.atoms[[3, 4, 2]].angle

In [19]: print(a.value())
47.770653826924175

These AtomGroup TopologyObjects are not added to the associated master TopologyGroup in the Universe.

Deleting from a Universe

As of version 0.21.0, there are specific methods for deleting TopologyObjects from a Universe:

• delete_Bonds()

• delete_Angles()

• delete_Dihedrals()

• delete_Impropers()
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Topology-specific methods

A number of analysis and transformation methods are defined for AtomGroup, ResidueGroup, and SegmentGroup
that require specific properties to be available. The primary requirement is the positions attribute. With positions, you
can easily compute a center of geometry:

>>> u.atoms.center_of_geometry()
array([-0.04223882, 0.01418196, -0.03504874])

The following methods all require coordinates.

• bbox()

• bsphere()

• center()

• center_of_geometry()

• centroid()

• pack_into_box()

• rotate()

• rotate_by()

• transform()

• translate()

• unwrap()

• wrap()

Other methods are made available when certain topology attributes are defined in the Universe. These are listed below.

2.1.11 Trajectories

In MDAnalysis, static data is contained in your universe Topology, while dynamic data is drawn from its trajectory at
Universe.trajectory. This is typically loaded from a trajectory file and includes information such as:

• atom coordinates (Universe.atoms.positions)

• box size (Universe.dimensions)

• velocities and forces (if your file format contains the data) (Universe.atoms.velocities)

Although these properties look static, they are actually dynamic, and the data contained within can change. In order
to remain memory-efficient, MDAnalysis does not load every frame of your trajectory into memory at once. Instead,
a Universe has a state: the particular timestep that it is currently associated with in the trajectory. When the timestep
changes, the data in the properties above shifts accordingly.

The typical way to change a timestep is to index it. Universe.trajectory can be thought of as a list of Timesteps,
a data structure that holds information for the current time frame. For example, you can query its length.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF, DCD

In [3]: u = mda.Universe(PSF, DCD)

(continues on next page)
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In [4]: len(u.trajectory)
Out[4]: 98

When a trajectory is first loaded from a file, it is set to the first frame (with index 0), by default.

In [5]: print(u.trajectory.ts, u.trajectory.time)
< Timestep 0 > 0.9999999119200186

Indexing the trajectory returns the timestep for that frame, and sets the Universe to point to that frame until the timestep
next changes.

In [6]: u.trajectory[3]
Out[6]: < Timestep 3 >

In [7]: print('Time of fourth frame', u.trajectory.time)
Time of fourth frame 3.9999996476800743

Many tasks involve applying a function to each frame of a trajectory. For these, you need to iterate through the frames,
even if you don’t directly use the timestep. This is because the act of iterating moves the Universe onto the next frame,
changing the dynamic atom coordinates.

Trajectories can also be sliced if you only want to work on a subset of frames.

In [8]: protein = u.select_atoms('protein')

In [9]: for ts in u.trajectory[:20:4]:
...: rad = protein.radius_of_gyration()
...: print('frame={}: radgyr={}'.format(ts.frame, rad))
...:

frame=0: radgyr=16.669018368649777
frame=4: radgyr=16.743960893217544
frame=8: radgyr=16.78938645874581
frame=12: radgyr=16.87231363208217
frame=16: radgyr=17.003316543310998

Note that after iterating over the trajectory, the frame is always set back to the first frame, even if your loop stopped
before the trajectory end.

In [10]: u.trajectory.frame
Out[10]: 0

Because MDAnalysis will pull trajectory data directly from the file it is reading from, changes to atom coordinates and
box dimensions will not persist once the frame is changed. The only way to make these changes permanent is to load
the trajectory into memory, or to write a new trajectory to file for every frame. For example, to set a cubic box size for
every frame and write it out to a file:

with mda.Writer('with_box.trr', 'w', n_atoms=u.atoms.n_atoms) as w:
for ts in u.trajectory:

ts.dimensions = [10, 10, 10, 90, 90, 90]
w.write(u.atoms)

u_with_box = mda.Universe(PSF, 'with_box.trr')
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Sometimes you may wish to only transform part of the trajectory, or to not write a file out. In these cases, MDAnalysis
supports “on-the-fly” transformations that are performed on a frame when it is read.

2.1.12 Slicing trajectories

MDAnalysis trajectories can be indexed to return a Timestep, or sliced to give a FrameIterator.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF, DCD

In [3]: u = mda.Universe(PSF, DCD)

In [4]: u.trajectory[4]
Out[4]: < Timestep 4 >

Indexing a trajectory shifts the Universe to point towards that particular frame, updating dynamic data such as
Universe.atoms.positions.

Note: The trajectory frame is not read from the MD data. It is the internal index assigned by MDAnalysis.

In [5]: u.trajectory.frame
Out[5]: 4

Creating a FrameIterator by slicing a trajectory does not shift the Universe to a new frame, but iterating over the
sliced trajectory will rewind the trajectory back to the first frame.

In [6]: fiter = u.trajectory[10::10]

In [7]: frames = [ts.frame for ts in fiter]

In [8]: print(frames, u.trajectory.frame)
[10, 20, 30, 40, 50, 60, 70, 80, 90] 0

You can also create a sliced trajectory with boolean indexing and fancy indexing. Boolean indexing allows you to select
only frames that meet a certain condition, by passing a ndarray with the same length as the original trajectory. Only
frames that have a boolean value of True will be in the resulting FrameIterator. For example, to select only the
frames of the trajectory with an RMSD under 2 angstrom:

In [9]: from MDAnalysis.analysis import rms

In [10]: protein = u.select_atoms('protein')

In [11]: rmsd = rms.RMSD(protein, protein).run()

In [12]: bools = rmsd.results.rmsd.T[-1] < 2

In [13]: print(bools)
[ True True True True True True True True True True True True
True True False False False False False False False False False False

False False False False False False False False False False False False
False False False False False False False False False False False False

(continues on next page)
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(continued from previous page)

False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False]

In [14]: fiter = u.trajectory[bools]

In [15]: print([ts.frame for ts in fiter])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

You can also use fancy indexing to control the order of specific frames.

In [16]: indices = [10, 2, 3, 9, 4, 55, 2]

In [17]: print([ts.frame for ts in u.trajectory[indices]])
[10, 2, 3, 9, 4, 55, 2]

You can even slice a FrameIterator to create a new FrameIterator.

In [18]: print([ts.frame for ts in fiter[::3]])
[0, 3, 6, 9, 12]

2.1.13 On-the-fly transformations

An on-the-fly transformation is a function that silently modifies the dynamic data contained in a trajectory Timestep
(typically coordinates) as it is loaded into memory. It is called for each current time step to transform data into your
desired representation. A transformation function must also return the current Timestep, as transformations are often
chained together.

The MDAnalysis.transformations module contains a collection of transformations. For example,
fit_rot_trans() can perform a mass-weighted alignment on an AtomGroup to a reference.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import TPR, XTC

In [3]: from MDAnalysis import transformations as trans

In [4]: u = mda.Universe(TPR, XTC)

In [5]: protein = u.select_atoms('protein')

In [6]: align_transform = trans.fit_rot_trans(protein, protein, weights=protein.masses)

In [7]: u.trajectory.add_transformations(align_transform)

Other implemented transformations include functions to translate, rotate, fit an AtomGroup to a reference, and
wrap or unwrap groups in the unit cell. (Please see the MDAnalysis on-the-fly transformations blog post contains a
more complete introduction to these fitting and wrapping functions.)

Although you can only call add_transformations() once, you can pass in multiple transformations in a list, which
will be executed in order.
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There is a transformations tutorial that shows in more detail how to use transformations. A few simple examples are
given below.

Example workflows

The workflow below

• makes all molecules whole (unwraps them over periodic boundary conditions),

• centers the protein in the center of the box,

• wraps water back into the box.

# create new Universe for new transformations
In [8]: u = mda.Universe(TPR, XTC)

In [9]: protein = u.select_atoms('protein')

In [10]: water = u.select_atoms('resname SOL')

In [11]: workflow = [trans.unwrap(u.atoms),
....: trans.center_in_box(protein, center='geometry'),
....: trans.wrap(water, compound='residues')]
....:

In [12]: u.trajectory.add_transformations(*workflow)

Please see the full tutorial for more information.

If your transformation does not depend on something within the Universe (e.g. a chosen AtomGroup), you can also
create a Universe directly with transformations. The code below translates coordinates 1 angstrom up on the z-axis:

In [13]: u = mda.Universe(TPR, XTC, transformations=[trans.translate([0, 0, 1])])

If you need a different transformation, it is easy to implement your own.

Custom transformations

At its core, a transformation function must only take a Timestep as its input and return the Timestep as the output.

In [14]: import numpy as np

In [15]: def up_by_2(ts):
....: """Translates atoms up by 2 angstrom"""
....: ts.positions += np.array([0.0, 0.0, 0.2])
....: return ts
....:

In [16]: u = mda.Universe(TPR, XTC, transformations=[up_by_2])

If your transformation needs other arguments, you will need to wrap your core transformation with a wrapper function
that can accept the other arguments.
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In [17]: def up_by_x(x):
....: """Translates atoms up by x angstrom"""
....: def wrapped(ts):
....: """Handles the actual Timestep"""
....: ts.positions += np.array([0.0, 0.0, float(x)])
....: return ts
....: return wrapped
....:

# load Universe with transformations that move it up by 7 angstrom
In [18]: u = mda.Universe(TPR, XTC, transformations=[up_by_x(5), up_by_x(2)])

Alternatively, you can use functools.partial() to substitute the other arguments.

In [19]: import functools

In [20]: def up_by_x(ts, x):
....: ts.positions += np.array([0.0, 0.0, float(x)])
....: return ts
....:

In [21]: up_by_5 = functools.partial(up_by_x, x=5)

In [22]: u = mda.Universe(TPR, XTC, transformations=[up_by_5])

On-the-fly transformation functions can be applied to any property of a Timestep, not just the atom positions. For
example, to give each frame of a trajectory a box:

In [23]: def set_box(ts):
....: ts.dimensions = [10, 20, 30, 90, 90, 90]
....: return ts
....:

In [24]: u = mda.Universe(TPR, XTC, transformations=[set_box])

2.1.14 Units and constants

The units of MDAnalysis trajectories are the Å (ångström) for length and ps (picosecond) for time. Regardless of
how the original MD format stored the trajectory data, MDAnalysis converts it to MDAnalysis units when reading the
data in, and converts back when writing the data out. Analysis classes generally also use these default units. Exceptions
to the default units are always noted in the documentation; for example, mass densities can be given in 𝑔/𝑐𝑚3.

Other base units are listed in the table Base units in MDAnalysis.
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Table 1: Base units in MDAnalysis

Quantity Unit SI units
length Å 10−10 m
time ps 10−12 s
energy kJ/mol 1.66053892103219× 10−21 J
charge 𝑒 1.602176565× 10−19 As
force kJ/(mol·Å) 1.66053892103219× 10−11 J/m
speed Å/ps 100 m/s
mass u 1.66053906660(50)× 10−27 kg
angle degrees 𝜋

180 rad

Unit conversion

Quantities can be converted from units with convert(). convert() simply multiplies the initial quantity with a
precomputed conversion factor, as obtained from get_conversion_factor().

The computed conversion factors for each quantity type are stored in MDAnalysis.units and shown below.

Constants

2.1.15 Reading and writing files

Input

Read information from topology and coordinate files to create a Universe:

import MDAnalysis as mda
u = mda.Universe('topology.gro', 'trajectory.xtc')

A topology file is always required for a Universe, whereas coordinate files are optional. Some file formats provide both
topology and coordinate information. MDAnalysis supports a number of formats, which are automatically detected
based on the file extension. For example, the above loads a GROMACS XTC trajectory. Multiple coordinate files can
be loaded, as described below; the following code loads two CHARMM/NAMD DCD files and concatenates them:

u = mda.Universe('topology.psf', 'trajectory1.dcd', 'trajectory2.dcd')

Some formats can be loaded with format-specific keyword arguments, such as the LAMMPS DATA atom_style spec-
ification.

See also:
See Loading from files for more information on loading data into a Universe from files.
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Reading multiple trajectories

A Universe can load multiple trajectories, which are concatenated in the order given. One exception to this is with XTC
and TRR files. If the continuous=True flag is passed to Universe, MDAnalysis will try to stitch them together so that
the trajectory is as time-continuous as possible. This means that there will be no duplicate time-frames, or jumps back
in time.

As an example, the following depicted trajectory is split into four parts. The column represents the time. As you can
see, some segments overlap. With continuous=True, only the frames marked with a + will be read.

part01: ++++--
part02: ++++++-
part03: ++++++++
part04: ++++

However, there can be gaps in time (i.e. frames appear to be missing). Ultimately it is the user’s responsiblity to ensure
that the trajectories can be stitched together meaningfully.

Note: While you can set continuous=True for either XTC or TRR files, you cannot mix different formats.

More information can be found at the API reference for ChainReader.

Trajectory formats

If no format keyword is provided, ChainReader will try to guess the format for each file from its extension. You can
force ChainReader to use the same format for every file by using the format keyword. You can also specify which
format to use by file, by passing in a sequence of (filename, format) tuples.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB, GRO

In [3]: u = mda.Universe(PDB, [(GRO, 'gro'), (PDB, 'pdb'), (GRO, 'gro')])

In [4]: u.trajectory
Out[4]: <ChainReader containing adk_oplsaa.gro, adk_oplsaa.pdb, adk_oplsaa.gro with 3␣
→˓frames of 47681 atoms>

In-memory trajectories

Reading trajectories into memory

If your device has sufficient memory to load an entire trajectory into memory, then analysis can be sped up substan-
tially by transferring the trajectory to memory. This makes it possible to operate on raw coordinates using existing
MDAnalysis tools. In addition, it allows the user to make changes to the coordinates in a trajectory (e.g. through
AtomGroup.positions) without having to write the entire state to file.

The most straightforward way to do this is to pass in_memory=True to Universe, which automatically transfers a
trajectory to memory:
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In [5]: from MDAnalysis.tests.datafiles import TPR, XTC

In [6]: universe = mda.Universe(TPR, XTC, in_memory=True)

MDAnalysis uses the MemoryReader class to load this data in.

Transferring trajectories into memory

The decision to transfer the trajectory to memory can be made at any time with the transfer_to_memory() method
of a Universe:

In [7]: universe = mda.Universe(TPR, XTC)

In [8]: universe.transfer_to_memory()

This operation may take a while (passing verbose=True to transfer_to_memory() will display a progress bar).
However, subsequent operations on the trajectory will be very fast.

Building trajectories in memory

MemoryReader can also be used to directly generate a trajectory as a numpy array.

In [9]: from MDAnalysisTests.datafiles import PDB

In [10]: from MDAnalysis.coordinates.memory import MemoryReader

In [11]: import numpy as np

In [12]: universe = mda.Universe(PDB)

In [13]: universe.atoms.positions
Out[13]:
array([[ 52.017, 43.56 , 31.555],

[ 51.188, 44.112, 31.722],
[ 51.551, 42.828, 31.039],
...,
[105.342, 74.072, 40.988],
[ 57.684, 35.324, 14.804],
[ 62.961, 47.239, 3.753]], dtype=float32)

The load_new() method can be used to load coordinates into a Universe, replacing the old coordinates:

In [14]: coordinates = np.random.rand(len(universe.atoms), 3)

In [15]: universe.load_new(coordinates, format=MemoryReader);

In [16]: universe.atoms.positions
Out[16]:
array([[0.36895528, 0.9657795 , 0.06230132],

[0.438692 , 0.71126854, 0.93739796],
[0.8822126 , 0.7240101 , 0.49902964],

(continues on next page)
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(continued from previous page)

...,
[0.9870636 , 0.49771127, 0.11342836],
[0.78792465, 0.8895965 , 0.7628201 ],
[0.8380824 , 0.737194 , 0.84836406]], dtype=float32)

or they can be directly passed in when creating a Universe.

In [17]: universe2 = mda.Universe(PDB, coordinates, format=MemoryReader)

In [18]: universe2.atoms.positions
Out[18]:
array([[0.36895528, 0.9657795 , 0.06230132],

[0.438692 , 0.71126854, 0.93739796],
[0.8822126 , 0.7240101 , 0.49902964],
...,
[0.9870636 , 0.49771127, 0.11342836],
[0.78792465, 0.8895965 , 0.7628201 ],
[0.8380824 , 0.737194 , 0.84836406]], dtype=float32)

In-memory trajectories of an atom selection

Creating a trajectory of an atom selection requires transferring the appropriate units. This is often needed when using
Merge() to create a new Universe, as coordinates are not automatically loaded in.

Output

Frames and trajectories

MDAnalysis Universes can be written out to a number of formats with write(). For example, to write the current
frame as a PDB:

from MDAnalysis.tests.datafiles import PDB, TRR
u = mda.Universe(PDB, TRR)
ag = u.select_atoms("name CA")
ag.write("c-alpha.pdb")

Pass in the frames keyword to write out trajectories.

ag.write('c-alpha_all.xtc', frames='all')

Slice or index the trajectory to choose which frames to write:

ag.write('c-alpha_skip2.trr', frames=u.trajectory[::2])
ag.write('c-alpha_some.dcd', frames=u.trajectory[[0,2,3]])

Alternatively, iterate over the trajectory frame-by-frame with Writer(). This requires you to pass in the number of
atoms to write.

with mda.Writer('c-alpha.xyz', ag.n_atoms) as w:
for ts in u.trajectory:

w.write(ag)
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You can pass keyword arguments to some format writers. For example, the LAMMPS DATA format allows the
lengthunit and timeunit keywords to specify the output units.

Pickling

MDAnalysis supports pickling of most of its data structures and trajectory formats. Unsupported attributes can be
found in PR #2887.

In [19]: import pickle

In [20]: from MDAnalysis.tests.datafiles import PSF, DCD

In [21]: psf = mda.Universe(PSF, DCD)

In [22]: pickle.loads(pickle.dumps(psf))
Out[22]: <Universe with 3341 atoms>

As for MDAnalysis.core.groups.AtomGroup, during serialization, it will be pickled with its bound MDAnalysis.
core.universe.Universe. This means that after unpickling, a new MDAnalysis.core.universe.Universe will
be created and be attached to the new MDAnalysis.core.groups.AtomGroup. If the Universe is serialized with its
MDAnalysis.core.groups.AtomGroup, they will still be bound together afterwards:

In [23]: import pickle

In [24]: from MDAnalysis.tests.datafiles import PSF, DCD

In [25]: u = mda.Universe(PSF, DCD)

In [26]: g = u.atoms

In [27]: g_pickled = pickle.loads(pickle.dumps(g))

In [28]: print("g_pickled.universe is u: ", u is g_pickled.universe)
g_pickled.universe is u: False

In [29]: g_pickled, u_pickled = pickle.loads(pickle.dumps((g, u)))

In [30]: print("g_pickled.universe is u_pickled: ",
....: u_pickled is g_pickled.universe)
....:

g_pickled.universe is u_pickled: True

If multiple MDAnalysis.core.groups.AtomGroups are bound to the same MDAnalysis.core.universe.
Universe, they will also be bound to the same one after serialization:

In [1]: u = mda.Universe(PSF, DCD)

In [2]: g = u.atoms[:2]

In [3]: h = u.atoms[2:4]

In [4]: g_pickled = pickle.loads(pickle.dumps(g))

(continues on next page)

2.1. Communications 263

https://github.com/MDAnalysis/mdanalysis/issues/2887
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe


MDAnalysis User Guide

(continued from previous page)

In [5]: h_pickled = pickle.loads(pickle.dumps(h))

In [6]: print("g_pickled.universe is h_pickled.universe : ",
...: g_pickled.universe is h_pickled.universe)
...:

g_pickled.universe is h_pickled.universe : False

In [7]: g_pickled, h_pickled = pickle.loads(pickle.dumps((g, h)))

In [8]: print("g_pickled.universe is h_pickled.universe: ",
...: g_pickled.universe is h_pickled.universe)
...:

g_pickled.universe is h_pickled.universe: True

2.1.16 Format overview

MDAnalysis can read topology or coordinate information from a wide variety of file formats. The emphasis is on
formats used in popular simulation packages. By default, MDAnalysis figures out formats by looking at the extension,
unless the format is explicitly specified with the format or topology_format keywords.

Below is a table of formats in MDAnalysis, and which information can be read from them. A topology file supplies the
list of atoms in the system, their connectivity and possibly additional information such as B-factors, partial charges,
etc. The details depend on the file format and not every topology file provides all (or even any) additional data.

Important: File formats are complicated and not always well defined. MDAnalysis tries to follow published standards
but this can sometimes surprise users. It is highly recommended that you read the page for your data file format instead
of assuming certain behaviour. If you encounter problems with a file format, please get in touch with us.

As a minimum, all topology parsers will provide atom ids, atom types, masses, resids, resnums, and segids.
They will also assign all Atoms to Residues and all Residues to Segments. For systems without residues and segments,
this results in there being a single Residue and Segment to which all Atoms belong. See Topology attributes for more
topology attributes.

Often when data is not provided by a file, it will be guessed based on other data in the file. In this scenario, MDAnalysis
will issue a warning. See Guessing for more information.

If a trajectory is loaded without time information, MDAnalysis will set a default timestep of 1.0 ps, where the first
frame starts at 0.0 ps. In order to change these, pass the following optional arguments to Universe:

• dt: the timestep

• time_offset: the starting time from which to calculate the time of each frame
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Topology

Coordinates

2.1.17 Guessing

When a Universe is created from a Universe, MDAnalysis guesses properties that have not been read from the file.
Sometimes these properties are available in the file, but are simply not read by MDAnalysis. For example, masses are
always guessed.

Masses

Atom masses are always guessed for every file format. They are guessed from the Atom.atom_type. This attribute
represents a number of different values in MDAnalysis, depending on which file format you used to create your Universe.
Atom.atom_type can be force-field specific atom types, from files that provide this information; or it can be an element,
guessed from the atom name. See further discussion here.

Important: When an atom mass cannot be guessed from the atom atom_type or name, the atom is assigned a mass
of 0.0. Masses are guessed atom-by-atom, so even if most atoms have been guessed correctly, it is possible that some
have been given masses of 0. It is important to check for non-zero masses before using methods that rely on them, such
as AtomGroup.center_of_mass().

Types

When atom atom_types are guessed, they represent the atom element. Atom types are always guessed from the atom
name. MDAnalysis follows biological naming conventions, where atoms named “CA” are much more likely to represent
an alpha-carbon than a calcium atom. This guesser is still relatively fragile for non-traditionally biological atom names.

Bonds, Angles, Dihedrals, Impropers

MDAnalysis can guess if bonds exist between two atoms, based on the distance between them. A bond is created if the
2 atoms are within

𝑑 < 𝑓 · (𝑅1 +𝑅2)

of each other, where 𝑅1 and 𝑅2 are the VdW radii of the atoms and 𝑓 is an ad-hoc fudge_factor. This is the same
algorithm that VMD uses.

Angles can be guessed from the bond connectivity. MDAnalysis assumes that if atoms 1 & 2 are bonded, and 2 & 3
are bonded, then (1,2,3) must be an angle.

1
\
2 -- 3

Dihedral angles and improper dihedrals can both be guessed from angles. Proper dihedrals are guessed by assuming
that if (1,2,3) is an angle, and 3 & 4 are bonded, then (1,2,3,4) must be a dihedral.

1 4
\ /
2 -- 3
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Likewise, if (1,2,3) is an angle, and 2 & 4 are bonded, then (2, 1, 3, 4) must be an improper dihedral (i.e. the improper
dihedral is the angle between the planes formed by (1, 2, 3) and (1, 3, 4))

1
\
2 -- 3

/
4

The method available to users is AtomGroup.guess_bonds, which allows users to pass in a dictionary of van der
Waals’ radii for atom types. This guesses bonds, angles, and dihedrals (but not impropers) for the specified AtomGroup
and adds it to the underlying Universe.

2.1.18 Auxiliary files

Auxiliary readers allow you to read in timeseries data accompanying a trajectory that is not stored in the regular trajec-
tory file.

Supported formats

Reader For-
mat

Exten-
sion (if
file)

Remarks

XVGReaderXVG xvg
(default)

Produced by Gromacs during simulation or analysis. Reads full file on
initialisation.

XVGFileReaderXVG-
F

xvg Alternate xvg file reader, reading each step from the file in turn for a
lower memory footprint. XVGReader is the default reader for .xvg files.

EDRReaderEDR edr Produced by Gromacs during simulation or analysis. Reads full file on
initialisation.

XVG Files

Reading data directly

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import XVG_BZ2 # cobrotoxin protein forces

In [3]: aux = mda.auxiliary.core.auxreader(XVG_BZ2)

In [4]: aux
Out[4]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7eff4e0afb20>

In stand-alone use, an auxiliary reader allows you to iterate over each step in a set of auxiliary data.

In [5]: for step in aux:
...: print(step.data)
...:

(continues on next page)
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[ 0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118 ]
[ 50. -1082.6454 -658.32166 ... -493.02954 589.8844
-739.2124 ]

[ 100. -246.27269 146.52911 ... 484.32501 2332.3767
-1801.6234 ]

Use slicing to skip steps.

In [6]: for step in aux[1:2]:
...: print(step.time)
...:

50.0

The auxreader() function uses the get_auxreader_for() to return an appropriate class. This can guess the format
either from a filename, ‘

In [7]: mda.auxiliary.core.get_auxreader_for(XVG_BZ2)
Out[7]: MDAnalysis.auxiliary.XVG.XVGReader

or return the reader for a specified format.

In [8]: mda.auxiliary.core.get_auxreader_for(format='XVG-F')
Out[8]: MDAnalysis.auxiliary.XVG.XVGFileReader

Loading data into a Universe

Auxiliary data may be added to a trajectory Reader through the add_auxiliary() method. Auxiliary data may be
passed in as a AuxReader instance, or directly as e.g. a filename, in which case get_auxreader_for() is used to
guess an appropriate reader.

In [9]: from MDAnalysis.tests.datafiles import PDB_xvf, TRR_xvf

In [10]: u = mda.Universe(PDB_xvf, TRR_xvf)

In [11]: u.trajectory.add_auxiliary('protein_force', XVG_BZ2)

In [12]: for ts in u.trajectory:
....: print(ts.aux.protein_force)
....:

[ 0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118 ]
[ 50. -1082.6454 -658.32166 ... -493.02954 589.8844
-739.2124 ]

[ 100. -246.27269 146.52911 ... 484.32501 2332.3767
-1801.6234 ]
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Passing arguments to auxiliary data

For alignment with trajectory data, auxiliary readers provide methods to assign each auxiliary step to the nearest tra-
jectory timestep, read all steps assigned to a trajectory timestep and calculate ‘representative’ value(s) of the auxiliary
data for that timestep.

To set a timestep or ??

‘Assignment’ of auxiliary steps to trajectory timesteps is determined from the time of the auxiliary step, dt of the
trajectory and time at the first frame of the trajectory. If there are no auxiliary steps assigned to a given timestep (or
none within cutoff, if set), the representative value(s) are set to np.nan.

Iterating over auxiliary data

Auxiliary data may not perfectly line up with the trajectory, or have missing data.

In [13]: from MDAnalysis.tests.datafiles import PDB, TRR

In [14]: u_long = mda.Universe(PDB, TRR)

In [15]: u_long.trajectory.add_auxiliary('protein_force', XVG_BZ2, dt=200)

In [16]: for ts in u_long.trajectory:
....: print(ts.time, ts.aux.protein_force[:4])
....:

0.0 [ 0. 200.71288 -1552.2849 -967.21124]
100.00000762939453 [ 100. -246.27269 146.52911 -1084.2484 ]
200.00001525878906 [nan nan nan nan]
300.0 [nan nan nan nan]
400.0000305175781 [nan nan nan nan]
500.0000305175781 [nan nan nan nan]
600.0 [nan nan nan nan]
700.0000610351562 [nan nan nan nan]
800.0000610351562 [nan nan nan nan]
900.0000610351562 [nan nan nan nan]

The trajectory ProtoReader methods next_as_aux() and iter_as_aux() allow for movement through only tra-
jectory timesteps for which auxiliary data is available.

In [17]: for ts in u_long.trajectory.iter_as_aux('protein_force'):
....: print(ts.time, ts.aux.protein_force[:4])
....:

0.0 [ 0. 200.71288 -1552.2849 -967.21124]
100.00000762939453 [ 100. -246.27269 146.52911 -1084.2484 ]

This may be used to avoid representative values set to np.nan, particularly when auxiliary data is less frequent.

Sometimes the auxiliary data is longer than the trajectory.

In [18]: u_short = mda.Universe(PDB)

In [19]: u_short.trajectory.add_auxiliary('protein_force', XVG_BZ2)

In [20]: for ts in u_short.trajectory:
(continues on next page)
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....: print(ts.time, ts.aux.protein_force)

....:
0.0 [ 0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118 ]

In order to acess auxiliary values at every individual step, including those outside the time range of the trajectory,
iter_auxiliary() allows iteration over the auxiliary independent of the trajectory.

In [21]: for step in u_short.trajectory.iter_auxiliary('protein_force'):
....: print(step.data)
....:

[ 0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118 ]
[ 50. -1082.6454 -658.32166 ... -493.02954 589.8844
-739.2124 ]

[ 100. -246.27269 146.52911 ... 484.32501 2332.3767
-1801.6234 ]

To iterate over only a certain section of the auxiliary:

In [22]: for step in u_short.trajectory.iter_auxiliary('protein_force', start=1, step=2):
....: print(step.time)
....:

50.0

The trajectory remains unchanged, and the auxiliary will be returned to the current timestep after iteration is complete.

Accessing auxiliary attributes

To check the values of attributes of an added auxiliary, use get_aux_attribute().

In [23]: u.trajectory.get_aux_attribute('protein_force', 'dt')
Out[23]: 50.0

If attributes are settable, they can be changed using set_aux_attribute().

In [24]: u.trajectory.set_aux_attribute('protein_force', 'data_selector', [1])

The auxiliary may be renamed using set_aux_attribute with ‘auxname’, or more directly by using rename_aux().

In [25]: u.trajectory.ts.aux.protein_force
Out[25]:
array([ 0. , 200.71288, -1552.2849 , ..., 128.4072 ,

1386.0378 , -2699.3118 ])

In [26]: u.trajectory.rename_aux('protein_force', 'f')

In [27]: u.trajectory.ts.aux.f
Out[27]:
array([ 0. , 200.71288, -1552.2849 , ..., 128.4072 ,

1386.0378 , -2699.3118 ])
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Recreating auxiliaries

To recreate an auxiliary, the set of attributes necessary to replicate it can first be obtained with get_description().
The returned dictionary can then be passed to auxreader() to load a new copy of the original auxiliary reader.

In [28]: description = aux.get_description()

In [29]: list(description.keys())
Out[29]:
['represent_ts_as',
'cutoff',
'dt',
'initial_time',
'time_selector',
'data_selector',
'constant_dt',
'auxname',
'format',
'auxdata']

In [30]: del aux

In [31]: mda.auxiliary.core.auxreader(**description)
Out[31]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7eff4e7d73d0>

The ‘description’ of any or all the auxiliaries added to a trajectory can be obtained using get_aux_descriptions().

In [32]: descriptions = u.trajectory.get_aux_descriptions(['f'])

To reload, pass the dictionary into add_auxiliary().

In [33]: u2 = mda.Universe(PDB, TRR)

In [34]: for desc in descriptions:
....: u2.trajectory.add_auxiliary(**desc)
....:

EDR Files

EDR files are created by GROMACS during simulations and contain additional non-trajectory time-series data of
the system, such as energies, temperature, or pressure. The EDRReader allows direct reading of these binary files
and associating of the data with trajectory time steps just like the XVGReader does. As all functionality of the base
AuxReaders (see XVGReader above) also works with the EDRReader, this section will highlight functionality unique
to the EDRReader.
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Standalone Usage

The EDRReader is initialised by passing the path to an EDR file as an argument.

In [35]: import MDAnalysis as mda

In [36]: from MDAnalysisTests.datafiles import AUX_EDR

In [37]: aux = mda.auxiliary.EDR.EDRReader(AUX_EDR)

# Or, for example
# aux = mda.auxiliary.EDR.EDRReader("path/to/file/ener.edr")

Dozens of terms can be defined in EDR files. A list of available data is conveniently available unter the terms attribute.

In [38]: aux.terms
Out[38]:
['Time',
'Bond',
'Angle',
'Proper Dih.',
'Ryckaert-Bell.',
'LJ-14',
'Coulomb-14',
'LJ (SR)',
'Disper. corr.',
'Coulomb (SR)',
'Coul. recip.',
'Potential',
'Kinetic En.',
'Total Energy',
'Conserved En.',
'Temperature',
'Pres. DC',
'Pressure',
'Constr. rmsd',
'Box-X',
'Box-Y',
'Box-Z',
'Volume',
'Density',
'pV',
'Enthalpy',
'Vir-XX',
'Vir-XY',
'Vir-XZ',
'Vir-YX',
'Vir-YY',
'Vir-YZ',
'Vir-ZX',
'Vir-ZY',
'Vir-ZZ',
'Pres-XX',
'Pres-XY',

(continues on next page)
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'Pres-XZ',
'Pres-YX',
'Pres-YY',
'Pres-YZ',
'Pres-ZX',
'Pres-ZY',
'Pres-ZZ',
'#Surf*SurfTen',
'Box-Vel-XX',
'Box-Vel-YY',
'Box-Vel-ZZ',
'T-Protein',
'T-non-Protein',
'Lamb-Protein',
'Lamb-non-Protein']

To extract data for plotting, the get_data method can be used. It can be used to extract a single, multiple, or all terms
as follows:

In [39]: temp = aux.get_data("Temperature")

In [40]: print(temp.keys())
dict_keys(['Time', 'Temperature'])

In [41]: energies = aux.get_data(["Potential", "Kinetic En."])

In [42]: print(energies.keys())
dict_keys(['Time', 'Potential', 'Kinetic En.'])

In [43]: all_data = aux.get_data()

In [44]: print(all_data.keys())
dict_keys(['Time', 'Bond', 'Angle', 'Proper Dih.', 'Ryckaert-Bell.', 'LJ-14', 'Coulomb-14
→˓', 'LJ (SR)', 'Disper. corr.', 'Coulomb (SR)', 'Coul. recip.', 'Potential', 'Kinetic␣
→˓En.', 'Total Energy', 'Conserved En.', 'Temperature', 'Pres. DC', 'Pressure', 'Constr.␣
→˓rmsd', 'Box-X', 'Box-Y', 'Box-Z', 'Volume', 'Density', 'pV', 'Enthalpy', 'Vir-XX',
→˓'Vir-XY', 'Vir-XZ', 'Vir-YX', 'Vir-YY', 'Vir-YZ', 'Vir-ZX', 'Vir-ZY', 'Vir-ZZ', 'Pres-
→˓XX', 'Pres-XY', 'Pres-XZ', 'Pres-YX', 'Pres-YY', 'Pres-YZ', 'Pres-ZX', 'Pres-ZY',
→˓'Pres-ZZ', '#Surf*SurfTen', 'Box-Vel-XX', 'Box-Vel-YY', 'Box-Vel-ZZ', 'T-Protein', 'T-
→˓non-Protein', 'Lamb-Protein', 'Lamb-non-Protein'])

The times of each data point are always part of the returned dictionary to facilicate plotting.

In [45]: import matplotlib.pyplot as plt

In [46]: plt.plot(temp["Time"], temp["Temperature"])
Out[46]: [<matplotlib.lines.Line2D at 0x7eff4d56bf10>]

In [47]: plt.ylabel("Temperature [K]")
Out[47]: Text(0, 0.5, 'Temperature [K]')

In [48]: plt.xlabel("Time [ps]")
(continues on next page)
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Out[48]: Text(0.5, 0, 'Time [ps]')

In [49]: plt.show()
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Unit Handling

On object creation, the EDRReader creates a unit_dict attribute which contains information on the units of the data
stored within. These units are read from the EDR file automatically and by default converted to MDAnalysis base units
where such units are defined. The automatic unit conversion can be disabled by setting the convert_units kwarg to
False.

In [50]: aux.unit_dict["Box-X"]
Out[50]: 'A'

In [51]: aux_native = mda.auxiliary.EDR.EDRReader(AUX_EDR, convert_units=False)

In [52]: aux_native.unit_dict["Box-X"]
Out[52]: 'nm'
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Use with Trajectories

An arbitrary number of terms to be associated with a trajectory can be specified as a dictionary. The dictionary is
chosen so that the name to be used in MDAnalysis to access the data is mapped to the name in aux.terms.

In [53]: from MDAnalysisTests.datafiles import AUX_EDR_TPR, AUX_EDR_XTC

In [54]: u = mda.Universe(AUX_EDR_TPR, AUX_EDR_XTC)

In [55]: term_dict = {"temp": "Temperature", "epot": "Potential"}

In [56]: u.trajectory.add_auxiliary(term_dict, aux)

In [57]: u.trajectory.ts.aux.epot
Out[57]: -525164.0625

Adding all data is possible by omitting the dictionary as follows. It is then necessary to specify that the EDRReader
should be passed as the auxdata argument as such:

In [58]: u = mda.Universe(AUX_EDR_TPR, AUX_EDR_XTC)

In [59]: u.trajectory.add_auxiliary(auxdata=aux)

In [60]: u.trajectory.aux_list
Out[60]: dict_keys(['Time', 'Bond', 'Angle', 'Proper Dih.', 'Ryckaert-Bell.', 'LJ-14',
→˓'Coulomb-14', 'LJ (SR)', 'Disper. corr.', 'Coulomb (SR)', 'Coul. recip.', 'Potential',
→˓'Kinetic En.', 'Total Energy', 'Conserved En.', 'Temperature', 'Pres. DC', 'Pressure',
→˓'Constr. rmsd', 'Box-X', 'Box-Y', 'Box-Z', 'Volume', 'Density', 'pV', 'Enthalpy', 'Vir-
→˓XX', 'Vir-XY', 'Vir-XZ', 'Vir-YX', 'Vir-YY', 'Vir-YZ', 'Vir-ZX', 'Vir-ZY', 'Vir-ZZ',
→˓'Pres-XX', 'Pres-XY', 'Pres-XZ', 'Pres-YX', 'Pres-YY', 'Pres-YZ', 'Pres-ZX', 'Pres-ZY',
→˓ 'Pres-ZZ', '#Surf*SurfTen', 'Box-Vel-XX', 'Box-Vel-YY', 'Box-Vel-ZZ', 'T-Protein', 'T-
→˓non-Protein', 'Lamb-Protein', 'Lamb-non-Protein'])

Selecting Trajectory Frames Based on Auxiliary Data

One use case for the new auxiliary readers is the selection of frames based on auxiliary data. To select only those
frames with a potential energy below a certain threshold, the following can be used:

In [61]: u = mda.Universe(AUX_EDR_TPR, AUX_EDR_XTC)

In [62]: term_dict = {"epot": "Potential"}

In [63]: u.trajectory.add_auxiliary(term_dict, aux)

In [64]: selected_frames = np.array([ts.frame for ts in u.trajectory if ts.aux.epot < -
→˓524600])

A slice of the trajectory can then be obtained from the list of frames as such:

In [65]: trajectory_slice = u.trajectory[selected_frames]

In [66]: print(len(u.trajectory))
4

(continues on next page)
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In [67]: print(len(trajectory_slice))
2

Memory Usage

It is assumed that the EDR file is small enough to be read in full. However, since one EDRReader instance is created
for each term added to a trajectory, memory usage monitoring was implemented. A warning will be issued if 1 GB
of memory is used by auxiliary data. This warning limit can optionally be changed by defining the memory_limit (in
bytes) when adding data to a trajectory. Below, the memory limit is set to 200 MB.

In [68]: u = mda.Universe(AUX_EDR_TPR, AUX_EDR_XTC)

In [69]: term_dict = {"temp": "Temperature", "epot": "Potential"}

In [70]: u.trajectory.add_auxiliary(term_dict, aux, memory_limit=2e+08)

2.1.19 Selection exporters

Selection exporters allow you to write a selection of atoms to a file that can be read by another program.

Writing selections

Single AtomGroup

The typical situation is that one has an AtomGroup and wants to work with the same selection of atoms in a different
package, for example, to visualize the atoms in VMD.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB

In [3]: u = mda.Universe(PDB)

In [4]: ag = u.select_atoms('resname ALA')

As with a normal structure file, use AtomGroup.write method with the appropriate file extension.

ag.write("ala_selection.vmd", name="alanine")

In VMD, sourcing the file ala_selection.vmd (written in Tcl) defines the “macro” alanine that contains the atom
indices to select.

source ala_selection.vmd
set sel [atomselect top alanine]

and in the GUI the macro appears in the Graphics → Representations window in the list Selections: Singlewords as
“alanine”.

Names are not always required; if name is not passed to AtomGroup.write, MDAnalysis defaults to “mdanalysis001”,
“mdanalysis002”, and so on.
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Multiple selections

AtomGroup.write can take additional keyword arguments, including mode. The default is mode='w', which will
overwrite the provided filename. If mode='a', the selection is appended to the file.

u.select_atoms('resname T*').write('residues.ndx',
name='TYR_THR',
mode='a')

u.select_atoms('resname GLY').write('residues.ndx',
name='GLY',
mode='a')

u.select_atoms('resname PRO').write('residues.ndx',
name='PRO',
mode='a')

Looking at this GROMACS index file, we see:

$ gmx make_ndx -n residues.ndx

Command line:
gmx make_ndx -n residues.ndx

Going to read 1 old index file(s)
Counted atom numbers up to 3341 in index file

0 TYR_THR : 301 atoms
1 GLY : 141 atoms
2 PRO : 140 atoms

nr : group '!': not 'name' nr name 'splitch' nr Enter: list groups
'a': atom '&': and 'del' nr 'splitres' nr 'l': list residues
't': atom type '|': or 'keep' nr 'splitat' nr 'h': help
'r': residue 'res' nr 'chain' char
"name": group 'case': case sensitive 'q': save and quit
'ri': residue index

Alternatively, you can direcly use the selection writer itself as a context manager and write each AtomGroup inside the
context. For example:

with mda.selections.gromacs.SelectionWriter('residues.ndx', mode='w') as ndx:
ndx.write(u.select_atoms('resname T*'),

name='TYR_THR')
ndx.write(u.select_atoms('resname GLY'),

name='GLY')

And again, you can append to the file with mode='a':

with mda.selections.gromacs.SelectionWriter('residues.ndx', mode='a') as ndx:
ndx.write(u.select_atoms('resname PRO'),

name='PRO')
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Reading in selections

Currently, MDAnalysis doesn’t support reading in atom selections. However, there are other tools that can read files
from other programs, such as GromacsWrapper.

2.1.20 Format reference

chemfiles (chemfiles Trajectory or file)

The chemfiles library provides a C++ implementation of readers and writers for multiple formats. Pass in either a
chemfiles.Trajectory to be converted into an MDAnalysis Universe, or pass in files to this format with the keyword
format='CHEMFILES' to read the information with the chemfiles implementation. You can also write the MDAnalysis
Universe back into a chemfiles object for further work.

CONFIG (DL_Poly Config)

HISTORY (DL_Poly Config)

MDAnalysis can read information both from DL Poly config and DL Poly history files. Although DL Poly input file
units can be flexible, output files appear to have the following units:

• Time: ps

• Length: Angstrom

• Mass: amu (Dalton)

• Velocity: Angstrom/ps

• Force: Angstrom Dalton / ps 2

MDAnalysis currently does not convert these into the native kJ/(mol A) force units when reading files in. See Issue
2393 for discussion on units.

COOR, NAMBDIN (NAMD binary restart files)

You can read or write coordinates from the NAMD double-precision binary format .

CRD (CHARMM CARD files)

Reading in

Read a list of atoms from a CHARMM standard or extended CARD coordinate file (CRD) to build a basic topol-
ogy. Reads atom ids (ATOMNO), atom names (TYPES), resids (RESID), residue numbers (RESNO), residue names
(RESNames), segment ids (SEGID) and tempfactor (Weighting). Atom element and mass are guessed based on the
name of the atom.
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Writing out

MDAnalysis automatically writes the CHARMM EXT extended format if there are more than 99,999 atoms.

Writing a CRD file format requires the following attributes to be present:

• resids

• resnames

• names

• chainIDs

• tempfactors

If these are not present, then default values are provided and a warning is raised.

DATA (LAMMPS)

Important: Lennard-Jones units are not implemented. See Units and constants for other recognized values and the
documentation for the LAMMPS units command.

Reading in

Lammps atoms can have lots of different formats, and even custom formats. By default, MDAnalysis checks:

• “full” : atoms with 7 fields (reading id, resid, type, and charge)

• “molecular”: atoms with 6 fields (reading id, resid, and type)

Users can pass in their own atom_style specifications.

• Required fields: id, type, x, y, z

• Optional fields: resid, charge

For example:

u = mda.Universe(LAMMPSDATA, atom_style="id resid type charge element bfactor occupancy␣
→˓x y z")

Only id, resid, charge, type, and coordinate information will be read from the file, even if other topology attributes are
specified in the atom_style argument.

Writing out

MDAnalysis supports writing out the header and applicable sections from Atoms, Masses, Velocities, Bonds, Angles,
Dihedrals, and Impropers. The Atoms section is written in the “full” sub-style if charges are available or “molecular”
sub-style if they are not. The molecule id is set to 0 for all atoms.

This writer assumes “conventional” or “real” LAMMPS units where length is measured in Angstroms and velocity is
measured in Angstroms per femtosecond. To write in different units, specify lengthunit or timeunit.

For example, to write a certain frame with nanometer units:
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>>> for ts in u.trajectory:
... # analyze frame
... if take_this_frame == True:
... with mda.Writer('frame.data') as W:
... W.write(u.atoms, lengthunit="nm")
... break

If atom types are not already positive integers, the user must set them to be positive integers, because the writer will
not automatically assign new types.

To preserve numerical atom types when writing a selection, the Masses section will have entries for each atom type up
to the maximum atom type. If the universe does not contain atoms of some type in {1, ... max(atom_types)},
then the mass for that type will be set to 1.

In order to write bonds, each selected bond type must be explicitly set to an integer >= 1.

DCD (CHARMM, NAMD, or LAMMPS trajectory)

DCD is used by NAMD, CHARMM and LAMMPS as the default trajectory format.

Reading in

Unitcell dimensions
Generally, DCD trajectories produced by any code can be read (with the DCDReader) although there can be issues with
the unitcell dimensions (simulation box). Currently, MDAnalysis tries to guess the correct format for the unitcell
representation but it can be wrong. Check the unitcell dimensions, especially for triclinic unitcells (see Issue 187).

MDAnalysis always uses (*A*, *B*, *C*, *alpha*, *beta*, *gamma*) to represent the unit cell. Lengths A,
B, C are in the MDAnalysis length unit (Å), and angles are in degrees.

The ordering of the angles in the unitcell is the same as in recent versions of VMD’s DCDplugin (2013), namely the
X-PLOR DCD format: The original unitcell is read as [A, gamma, B, beta, alpha, C] from the DCD file. If any
of these values are < 0 or if any of the angles are > 180 degrees then it is assumed it is a new-style CHARMM unitcell
(at least since c36b2) in which box vectors were recorded.

Important: Check your unit cell dimensions carefully, especially when using triclinic boxes. Old CHARMM trajec-
tories might give wrong unitcell values.

Units
The DCD file format is not well defined. In particular, NAMD and CHARMM use it differently. DCD trajectories
produced by CHARMM and NAMD( >2.5) record time in AKMA units. If other units have been recorded (e.g., ps)
then employ the configurable LAMMPS DCD format and set the time unit as an optional argument. You can find a list
of units used in the DCD formats on the MDAnalysis wiki.
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Writing out

The writer follows recent NAMD/VMD convention for the unitcell (box lengths in Å and angle-cosines, [A,
cos(gamma), B, cos(beta), cos(alpha), C]). It writes positions in Å and time in AKMA time units.

Reading and writing these trajectories within MDAnalysis will work seamlessly. However, if you process those trajec-
tories with other tools, you need to watch out that time and unitcell dimensions are correctly interpreted.

DCD (Flexible LAMMPS trajectory)

LAMMPS can write DCD trajectories but unlike a CHARMM trajectory (which is often called a DCD, even though
CHARMM itself calls them “trj”) the time unit is not fixed to be the AKMA time unit but can depend on settings
in LAMMPS. The most common case for biomolecular simulations appears to be that the time step is recorded in
femtoseconds (command units real in the input file) and lengths in ångströms. Other cases are unit-less Lennard-Jones
time units.

This presents a problem for MDAnalysis, because it cannot autodetect the unit from the file. By default, we assume
that the unit for length is the ångström and the unit for time is the femtosecond. If this is not true, then the user should
supply the appropriate units in the keywords timeunit and/or lengthunit to DCDWriter and Universe (which then
calls DCDReader).

DMS (Desmond Molecular Structure files)

The DESRES Molecular Structure (DMS) file is an SQLite-format database for storing coordinate and topology infor-
mation. See the Desmond Users Guide (chapter 6 and chapter 17) for more information.

Important: Atom ids
Unlike most other file formats, Desmond starts atom numbers at 0. This means the first atom in a DMS file will have
an Atom.id of 0. However, residues are not necessarily numbered from 0. Residue.resid numbering can start from
1.

GMS (Gamess trajectory)

The GMS output format is a common output format for different GAMESS distributions: GAMESS-US, Firefly (PC-
GAMESS) and GAMESS-UK. The current version has been tested with US GAMESS and Firefly only.

Reading in

MDAnalysis can read a GAMESS output file and pull out atom information. Atom names are their elements. Informa-
tion about residues and segments is not read.
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GRO (GROMACS structure file)

GRO files provide topology, coordinate, and sometimes velocity information.

Reading in

Prior to MDAnalysis version 0.21.0 and GROMACS 2019.5, MDAnalysis failed to parse GRO files with box sizes
where an axis length was longer than 10 characters.

Important: A Universe created with a GRO file and a Universe created with a corresponding TPR file will have
different atom and residue numbering, due to how a TPR file is parsed. This behaviour will change in 2.0.0 where
TPR parsing will be made consistent with the other file formats.

Writing out

AtomGroups can be written out to a GRO file. However, this format does not support multi-frame trajectories.

GSD (HOOMD GSD file)

The HOOMD schema GSD file format can contain both topology and trajectory information (output of HOOMD-blue).

Reading in

Important: The GSD format was developed to support changing numbers of particles, particle types, particle identities
and topologies. However, MDAnalysis currently does not support changing topologies. Therefore, the MDAnalysis
reader should only be used for trajectories that keep the particles and topologies fixed.

A user will only get an error if the number of particles changes from the first time step. MDAnalysis does not currently
check for changes in the particle identity or topology, and it does not update these over the trajectory.

Note: Residue resnames
Unlike other formats, MDAnalysis treats residue resnames from GSD files as integers. These are identical to resids
and resnums.

IN, FHIAIMS (FHI-aims input files)

FHI-aims input files are similar to xyz in format. The specification is publicly available.
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INPCRD, RESTRT (AMBER restart files)

MDAnalysis can read coordinates in Amber coordinate/restart files (suffix “inpcrd”).

ITP (GROMACS portable topology files)

A ITP file is a portable topology file.

Important: Unlike TPR files, atom ids and residues resids in ITP files are indexed from 1. This means that a TPR
file created from your ITP files will have different numbering in MDAnalysis than the ITP file.

LAMMPSDUMP (LAMMPS ascii dump file)

Reading in

MDAnalysis expects ascii dump files to be written with the default LAMMPS dump format of ‘atom’.It will automati-
cally convert positions from their scaled/fractional representation to their real values.

Important: Lennard-Jones units are not implemented. See Units and constants for other recognized values and the
documentation for the LAMMPS units command.

MMTF (Macromolecular Transmission Format)

The Macromolecular Transmission Format format (MMTF) should generally be a quicker alternative to PDB.

Individual models within the MMTF file are available via the models attribute of Universe.

MOL2 (Tripos structure)

The Tripos molecule structure format (MOL2) is a commonly used format. It is used, for instance, by the DOCK
docking code.

Warning: MOL2Writer can only be used to write out previously loaded MOL2 files. For example, if you’re trying
to convert a PDB file to MOL2, you should use other tools such as rdkit.

Here is an example how to use rdkit to convert a PDB to MOL:

from rdkit import Chem
mol = Chem.MolFromPDBFile("molecule.pdb", removeHs=False)
Chem.MolToMolFile(mol, "molecule.mol" )
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MOL2 specification

• Example file:

# Name: benzene
# Creating user name: tom
# Creation time: Wed Dec 28 00:18:30 1988

# Modifying user name: tom
# Modification time: Wed Dec 28 00:18:30 1988

@<TRIPOS>MOLECULE
benzene
12 12 1 0 0
SMALL
NO_CHARGES

@<TRIPOS>ATOM
1 C1 1.207 2.091 0.000 C.ar 1 BENZENE 0.000
2 C2 2.414 1.394 0.000 C.ar 1 BENZENE 0.000
3 C3 2.414 0.000 0.000 C.ar 1 BENZENE 0.000
4 C4 1.207 -0.697 0.000 C.ar 1 BENZENE 0.000
5 C5 0.000 0.000 0.000 C.ar 1 BENZENE 0.000
6 C6 0.000 1.394 0.000 C.ar 1 BENZENE 0.000
7 H1 1.207 3.175 0.000 H 1 BENZENE 0.000
8 H2 3.353 1.936 0.000 H 1 BENZENE 0.000
9 H3 3.353 -0.542 0.000 H 1 BENZENE 0.000
10 H4 1.207 -1.781 0.000 H 1 BENZENE 0.000
11 H5 -0.939 -0.542 0.000 H 1 BENZENE 0.000
12 H6 -0.939 1.936 0.000 H 1 BENZENE 0.000
@<TRIPOS>BOND
1 1 2 ar
2 1 6 ar
3 2 3 ar
4 3 4 ar
5 4 5 ar
6 5 6 ar
7 1 7 1
8 2 8 1
9 3 9 1
10 4 10 1
11 5 11 1
12 6 12 1
@<TRIPOS>SUBSTRUCTURE
1 BENZENE 1 PERM 0 **** **** 0 ROOT
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NCDF, NC (AMBER NetCDF trajectory)

AMBER binary trajectories are automatically recognised by the file extension “.ncdf”. The NCDF module uses scipy.
io.netcdf and therefore scipy must be installed.

Reading in

Units are assumed to be the following default AMBER units:

• length: Angstrom

• time: ps

Currently, if other units are detected, MDAnalysis will raise a NotImplementedError.

Writing out

NCDF files are always written out in ångström and picoseconds.

Although scale_factors can be read from NCDF files, they are not kept or used when writing NCDF files out.

Writing with the netCDF4 module and potential issues
Although scipy.io.netcdf is very fast at reading NetCDF files, it is slow at writing them out. The
netCDF4 package is fast at writing (but slow at reading). This requires the compiled netcdf library to be
installed. MDAnalysis tries to use netCDF4 for writing if it is available, but will fall back to scipy.io.
netcdf if it is not.

AMBER users might have a hard time getting netCDF4 to work with a conda-based installation (as dis-
cussed in Issue #506) because of the way that AMBER itself handles netcdf. In this scenario, MDAnalysis
will simply switch to the scipy package. If you encounter this error and wish to use the the faster netCDF4
writer, the only solution is to unload the AMBER environment.

ParmEd (ParmEd Structure)

The ParmEd library is a general tool for molecular modelling, often used to manipulate system topologies or convert
between file formats. You can pass in a parmed.Structure to be converted into an MDAnalysis Universe, and convert
it back using a ParmEdConverter. While you can convert Universes created by other means (e.g. by reading files)
into a ParmEd structure, MDAnalysis does not read or generate details such the “type” of a bond (i.e. bondtype), or
information such as ureybradley terms.

PDB, ENT (Standard PDB file)

Reading in

MDAnalysis parses the following PDB records (see PDB coordinate section for details):

• CRYST1 for unit cell dimensions A,B,C, alpha,beta,gamma

• ATOM or HETATM for serial, name, resName, chainID, resSeq, x, y, z, occupancy, tempFactor, segID

• CONECT records for bonds

• HEADER (Universe.trajectory.header)

• TITLE (Universe.trajectory.title)
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• COMPND (Universe.trajectory.compound)

• REMARK (Universe.trajectory.remarks)

All other lines are ignored. Multi-MODEL PDB files are read as trajectories with a default timestep of 1 ps (pass in
the dt argument to change this). Currently, MDAnalysis cannot read multi-model PDB files written by VMD, as VMD
uses the keyword “END” to separate models instead of “MODEL”/”ENDMDL” keywords.

Important: Previously, MDAnalysis did not read elements from a file. Now, if valid elements are provided, MDAnal-
ysis will read them in and will not guess them from atom names.

MDAnalysis attempts to read segid attributes from the segID column. If this column does not contain information, seg-
ments are instead created from chainIDs. If chainIDs are also not present, then segids are set to the default 'SYSTEM'
value.

Writing out

MDAnalysis can write both single-frame PDBs and convert trajectories to multi-model PDBs. If the Universe is missing
fields that are required in a PDB file, MDAnalysis provides default values and raises a warning. There are 2 exceptions
to this:

• chainIDs: if a Universe does not have chainIDs, MDAnalysis uses the first character of the segment segid
instead.

• elements: Elements are always guessed from the atom name.

These are the default values:

• names: ‘X’

• altLocs: ‘’

• resnames: ‘UNK’

• icodes: ‘’

• segids: ‘’

• resids: 1

• occupancies: 1.0

• tempfactors: 0.0

PDB specification

Table 2: CRYST1 fields

COLUMNS DATA TYPE FIELD DEFINITION
1 - 6 Record name “CRYST1”
7 - 15 Real(9.3) a a (Angstroms).
16 - 24 Real(9.3) b b (Angstroms).
25 - 33 Real(9.3) c c (Angstroms).
34 - 40 Real(7.2) alpha alpha (degrees).
41 - 47 Real(7.2) beta beta (degrees).
48 - 54 Real(7.2) gamma gamma (degrees).
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Table 3: ATOM/HETATM fields

COLUMNS DATA TYPE FIELD DEFINITION
1 - 6 Record name “ATOM “
7 - 11 Integer serial Atom serial number.
13 - 16 Atom name Atom name.
17 Character altLoc Alternate location indicator.
18 - 21 Residue name resName Residue name.
22 Character chainID Chain identifier.
23 - 26 Integer resSeq Residue sequence number.
27 AChar iCode Code for insertion of residues.
31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.
39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.
47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.
55 - 60 Real(6.2) occupancy Occupancy.
61 - 66 Real(6.2) tempFactor Temperature factor.
67 - 76 String segID (unofficial CHARMM extension ?)
77 - 78 LString(2) element Element symbol, right-justified.
79 - 80 LString(2) charge Charge on the atom.

PDBQT (Autodock structure)

Reading in

MDAnalysis reads coordinates from PDBQT files and additional optional data such as B-factors, partial charge and
AutoDock atom types. It is also possible to substitute a PDBQT file for a PSF file in order to define the list of atoms
(but no connectivity information will be available in this case).

Although PDBQT is a similar file format to PDB, MDAnalysis treats them with several differences:

• Multi-model PDBQT files are not supported

• Connectivity is not supported (i.e. bonds are not read)

Writing out

MDAnalysis implements a subset of the PDB 3.2 standard and the PDBQT spec. Unlike the PDB, ENT (Standard PDB
file) writer, MDAnalysis cannot write multi-frame trajectories to a PDBQT file.

If the Universe is missing fields that are required in a PDBQT file, MDAnalysis provides default values and raises a
warning. There are 2 exceptions to this:

• chainIDs: if a Universe does not have chainIDs, MDAnalysis will use the segids instead.

• elements: MDAnalysis uses the atom type as the element.

These are the default values:

• names: ‘X’

• altLocs: ‘’

• resnames: ‘UNK’

• icodes: ‘’

• segids: ‘’
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• resids: 1

• occupancies: 1.0

• tempfactors: 0.0

• types (elements): ‘’

• charges: 0.0

PDBQT specification

Records read:
• CRYST1 for unit cell dimensions A,B,C, alpha,beta,gamma

• ATOM or HETATM for serial, name, resName, chainID, resSeq, x, y, z, occupancy, tempFactor, segID

Table 4: PDB format with AutoDOCK extensions for the PDBQT format.

COLUMNS DATA TYPE FIELD DEFINITION
1 - 6 Record name “CRYST1”
7 - 15 Real(9.3) a a (Angstroms).
16 - 24 Real(9.3) b b (Angstroms).
25 - 33 Real(9.3) c c (Angstroms).
34 - 40 Real(7.2) alpha alpha (degrees).
41 - 47 Real(7.2) beta beta (degrees).
48 - 54 Real(7.2) gamma gamma (degrees).
1 - 6 Record name “ATOM “
7 - 11 Integer serial Atom serial number.
13 - 16 Atom name Atom name.
17 Character altLoc Alternate location indicator. IGNORED
18 - 21 Residue name resName Residue name.
22 Character chainID Chain identifier.
23 - 26 Integer resSeq Residue sequence number.
27 AChar iCode Code for insertion of residues. IGNORED
31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.
39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.
47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.
55 - 60 Real(6.2) occupancy Occupancy.
61 - 66 Real(6.2) tempFactor Temperature factor.
67 - 70 LString(4) footnote Usually blank. IGNORED.
71 - 76 Real(6.4) partialChrg Gasteiger PEOE partial charge q.
79 - 80 LString(2) atomType AutoDOCK atom type t.

We ignore torsion notation and just pull the partial charge and atom type columns:

COMPND NSC7810
REMARK 3 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: A7_7 and C22_23
REMARK 2 A between atoms: A9_9 and A11_11
REMARK 3 A between atoms: A17_17 and C21_21
ROOT
123456789.123456789.123456789.123456789.123456789.123456789.123456789.123456789. (column␣

(continues on next page)
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(continued from previous page)

→˓reference)
ATOM 1 A1 INH I 1.054 3.021 1.101 0.00 0.00 0.002 A
ATOM 2 A2 INH I 1.150 1.704 0.764 0.00 0.00 0.012 A
ATOM 3 A3 INH I -0.006 0.975 0.431 0.00 0.00 -0.024 A
ATOM 4 A4 INH I 0.070 -0.385 0.081 0.00 0.00 0.012 A
ATOM 5 A5 INH I -1.062 -1.073 -0.238 0.00 0.00 0.002 A
ATOM 6 A6 INH I -2.306 -0.456 -0.226 0.00 0.00 0.019 A
ATOM 7 A7 INH I -2.426 0.885 0.114 0.00 0.00 0.052 A
ATOM 8 A8 INH I -1.265 1.621 0.449 0.00 0.00 0.002 A
ATOM 9 A9 INH I -1.339 2.986 0.801 0.00 0.00 -0.013 A
ATOM 10 A10 INH I -0.176 3.667 1.128 0.00 0.00 0.013 A
ENDROOT
BRANCH 9 11
ATOM 11 A11 INH I -2.644 3.682 0.827 0.00 0.00 -0.013 A
ATOM 12 A16 INH I -3.007 4.557 -0.220 0.00 0.00 0.002 A
ATOM 13 A12 INH I -3.522 3.485 1.882 0.00 0.00 0.013 A
ATOM 14 A15 INH I -4.262 5.209 -0.177 0.00 0.00 -0.024 A
ATOM 15 A17 INH I -2.144 4.784 -1.319 0.00 0.00 0.052 A
ATOM 16 A14 INH I -5.122 4.981 0.910 0.00 0.00 0.012 A
ATOM 17 A20 INH I -4.627 6.077 -1.222 0.00 0.00 0.012 A
ATOM 18 A13 INH I -4.749 4.135 1.912 0.00 0.00 0.002 A
ATOM 19 A19 INH I -3.777 6.285 -2.267 0.00 0.00 0.002 A
ATOM 20 A18 INH I -2.543 5.650 -2.328 0.00 0.00 0.019 A
BRANCH 15 21
ATOM 21 C21 INH I -0.834 4.113 -1.388 0.00 0.00 0.210 C
ATOM 22 O1 INH I -0.774 2.915 -1.581 0.00 0.00 -0.644 OA
ATOM 23 O3 INH I 0.298 4.828 -1.237 0.00 0.00 -0.644 OA
ENDBRANCH 15 21
ENDBRANCH 9 11
BRANCH 7 24
ATOM 24 C22 INH I -3.749 1.535 0.125 0.00 0.00 0.210 C
ATOM 25 O2 INH I -4.019 2.378 -0.708 0.00 0.00 -0.644 OA
ATOM 26 O4 INH I -4.659 1.196 1.059 0.00 0.00 -0.644 OA
ENDBRANCH 7 24
TORSDOF 3
123456789.123456789.123456789.123456789.123456789.123456789.123456789.123456789. (column␣
→˓reference)

PQR file (PDB2PQR / APBS)

MDAnalysis can read classes from a PQR file (as written by PDB2PQR). Parsing is adopted from the description of
the PQR format as used by APBS.

Warning: Fields must be white-space separated or data are read incorrectly. PDB formatted files are not guaran-
teed to be white-space separated so extra care should be taken when quickly converting PDB files into PQR files
using simple scripts.

For example, PQR files created with PDB2PQR and the –whitespace option are guaranteed to conform to the above
format:
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pdb2pqr --ff=charmm --whitespace 4ake.pdb 4ake.pqr

Reading in

MDAnalysis reads data on a per-line basis from PQR files using the following format:

recordName serial atomName residueName chainID residueNumber X Y Z charge radius

If this fails it is assumed that the chainID was omitted and the shorter format is read:

recordName serial atomName residueName residueNumber X Y Z charge radius

Anything else will raise a ValueError.

The whitespace is the most important feature of this format: fields must be separated by at least one space or tab
character.

Writing out

Charges (“Q”) are taken from the MDAnalysis.core.groups.Atom.charge attribute while radii are obtained from
the MDAnalysis.core.groups.Atom.radius attribute.

• If the segid is ‘SYSTEM’ then it will be set to the empty string. Otherwise the first letter will be used as the
chain ID.

• The serial number always starts at 1 and increments sequentially for the atoms.

The output format is similar to pdb2pqr --whitespace.

Output should look like this (although the only real requirement is whitespace separation between all entries). The
chainID is optional and can be omitted:

ATOM 1 N MET 1 -11.921 26.307 10.410 -0.3000 1.8500
ATOM 36 NH1 ARG 2 -6.545 25.499 3.854 -0.8000 1.8500
ATOM 37 HH11 ARG 2 -6.042 25.480 4.723 0.4600 0.2245

PQR specification

The PQR fields read are:

recordName
A string which specifies the type of PQR entry and should either be ATOM or HETATM.

serial
An integer which provides the atom index (but note that MDAnalysis renumbers atoms so one cannot rely on the
serial)

atomName
A string which provides the atom name.

residueName
A string which provides the residue name.

chainID
An optional string which provides the chain ID of the atom.
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residueNumber
An integer which provides the residue index.

X Y Z
Three floats which provide the atomic coordiantes.

charge
A float which provides the atomic charge (in electrons).

radius
A float which provides the atomic radius (in Å).

Clearly, this format can deviate wildly from PDB due to the use of whitespaces rather than specific column widths and
alignments. This deviation can be particularly significant when large coordinate values are used.

PSF (CHARMM, NAMD, or XPLOR protein structure file)

A protein structure file (PSF) contains topology information for CHARMM, NAMD, and XPLOR. The MDAnalysis
PSFParser only reads information about atoms, bonds, angles, dihedrals, and impropers. While PSF files can include
information on hydrogen-bond donor and acceptor groups, MDAnalysis does not read these in.

Important: Atom ids
Although PSF files index atoms from 1 in the file, the MDAnalysis PSFParser subtracts 1 to create atom ids. This
means that if your atom is numbered 3 in your PSF file, it will have an Atom.id of 2 in MDAnalysis.

Atom indices are MDAnalysis derived and always index from 0, no matter the file type.

Reading in

PSF files can come in a number of “flavours”: STANDARD, EXTENDED, and NAMD. If your file is not a standard
file, it must have a NAMD or EXT flag to tell MDAnalysis to how to parse the atom section.

As a NAMD file is space-separated, files with missing columns can cause MDAnalysis to read information incorrectly.
This can cause issues for PSF files written from VMD.

PSF files can encode insertion codes. However, MDAnalysis does not currently support reading PSF files with insertion
codes.

PSF specification

CHARMM
Normal (standard) and extended (EXT) PSF format are supported. CHEQ is supported in the sense that CHEQ data is
simply ignored.

CHARMM Format from source/psffres.src:

CHEQ:

II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I),ECH(I),EHA(I)

standard format:
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8,2G14.6)

(continues on next page)
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(continued from previous page)

(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR
expanded format EXT:
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8,2G14.6)
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR

no CHEQ:

II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I)

standard format:
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8)
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8) XPLOR
expanded format EXT:
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8)
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8) XPLOR

NAMD
This format is space separated (see the release notes for VMD 1.9.1, psfplugin).

TNG (Trajectory Next Generation)

TNG (The Next Generation) is a highly flexible and high performance trajectory file format for molecular simulations,
particularly designed for GROMACS. It includes support for storing both reduced precision coordinates and a lossless,
full precision version simultaneously. This enables high quality scientific analysis alongside long term storage in a
format that retains full scientific integrity. TNG supports an arbitrary number of data blocks of various types to be
added to the file.

Reading in

MDAnalysis supports reading of TNG files. The TNGReader uses the GROMACS tng library for reading the binary
TNG format.

The TNG format includes high level C-style API functions for increased ease of use.

TOP, PRMTOP, PARM7 (AMBER topology)

AMBER specification

Note: The Amber charge is converted to electron charges as used in MDAnalysis and other packages. To get back
Amber charges, multiply by 18.2223.
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Table 5: Attributes parsed from AMBER keywords

AMBER flag MDAnalysis attribute
ATOM_NAME names
CHARGE charges
ATOMIC_NUMBER elements
MASS masses
BONDS_INC_HYDROGEN BONDS_WITHOUT_HYDROGEN bonds
ANGLES_INC_HYDROGEN ANGLES_WITHOUT_HYDROGEN angles
DIHEDRALS_INC_HYDROGEN DIHEDRALS_WITHOUT_HYDROGEN dihedrals / improper
ATOM_TYPE_INDEX type_indices
AMBER_ATOM_TYPE types
RESIDUE_LABEL resnames
RESIDUE_POINTER residues

Developer notes

The format is defined in PARM parameter/topology file specification. The reader tries to detect if it is a newer (AMBER
12?) file format by looking for the flag “ATOMIC_NUMBER”.

TPR (GROMACS run topology files)

A GROMACS TPR file is a portable binary run input file. It contains both topology and coordinate information.
However, MDAnalysis currently only reads topology information about atoms, bonds, dihedrals, and impropers; it
does not read the coordinate information.

Important: Atom ids, residue resids, and molnums
GROMACS indexes atom numbers and residue numbers from 1 in user-readable files. However, the MDAnalysis
TPRParser creates atom ids and residue resids from 0. This means that if your atom is numbered 3 in your GRO,
ITP, or TOP file, it will have an Atom.id of 2 in MDAnalysis. Likewise, if your residue ALA has a residue number of
4 in your GRO file, it will have a Residue.resid number of 3 in MDAnalysis. Finally, molecules are also numbered
from 0, in the attribute molnums.

This will change in version 2.0.0. The TPRParser will number resids, ids, etc. from 1 to be consistent with other
formats.
Atom indices and residue resindices are MDAnalysis derived and always index from 0, no matter the file type.
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Supported versions

Table 6: TPR format versions and generations read by MDAnalysis.
topology.TPRParser.parse().

TPX format TPX generation Gromacs release read
?? ?? 3.3, 3.3.1 no
58 17 4.0, 4.0.2, 4.0.3, 4.0.4, 4.0.5, 4.0.6, 4.0.7 yes
73 23 4.5.0, 4.5.1, 4.5.2, 4.5.3, 4.5.4, 4.5.5 yes
83 24 4.6, 4.6.1 yes
100 26 5.0, 5.0.1, 5.0.2, 5.0.3,5.0.4, 5.0.5 yes
103 26 5.1 yes
110 26 2016 yes
112 26 2018 yes
116 26 2019 yes

For further discussion and notes see Issue 2. Please open a new issue in the Issue Tracker when a new or different TPR
file format version should be supported.

TPR specification

The TPR reader is a pure-python implementation of a basic TPR parser. Currently the following topology attributes
are parsed:

• Atoms: number, name, type, resname, resid, segid, chainID, mass, charge, [residue, segment, radius, bfactor,
resnum, moltype]

• Bonds

• Angles

• Dihedrals

• Impropers

segid and chainID

MDAnalysis gets the segment and chainID attributes from the TPR molblock field. Since TPR files are built from
GROMACS topology files, molblock fields get their names from the compounds listed under the [ molecules ]
header. For example:

[ molecules ]
; Compound #mols
Protein_chain_A 1
Protein_chain_B 1
SOL 40210

So, the TPR will get 3 molblock s: Protein_chain_A, Protein_chain_B and SOL, while MDAnalysis will set
the segid s to seg_{segment_index}_{molblock}, thus: seg_0_Protein_chain_A, seg_1_Protein_chain_B
and seg_2_SOL. On the other hand, chainID will be identical to molblock unless molblock is named “Pro-
tein_chain_XXX”, in which case chainID will be set to XXX. Thus in this case the chainID s will be: A, B and
SOL.
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Bonds

Bonded interactions available in Gromacs are described in the Gromacs manual. The following ones are used to build
the topology (see Issue 463):

Table 7: GROMACS entries used to create bonds.

Directive Type Description
bonds 1 regular bond
bonds 2 G96 bond
bonds 3 Morse bond
bonds 4 cubic bond
bonds 5 connections
bonds 6 harmonic potentials
bonds 7 FENE bonds
bonds 8 tabulated potential with exclusion/connection
bonds 9 tabulated potential without exclusion/connection
bonds 10 restraint potentials
constraints 1 constraints with exclusion/connection
constraints 2 constraints without exclusion/connection
settles 1 SETTLE constraints

Table 8: GROMACS entries used to create angles.

Directive Type Description
angles 1 regular angle
angles 2 G96 angle
angles 3 Bond-bond cross term
angles 4 Bond-angle cross term
angles 5 Urey-Bradley
angles 6 Quartic angles
angles 8 Tabulated angles
angles 10 restricted bending potential

Table 9: GROMACS entries used to create dihedrals.

Directive Type Description
dihedrals 1 proper dihedral
dihedrals 3 Ryckaert-Bellemans dihedral
dihedrals 5 Fourier dihedral
dihedrals 8 Tabulated dihedral
dihedrals 9 Periodic proper dihedral
dihedrals 10 Restricted dihedral
dihedrals 11 Combined bending-torsion potential

Table 10: GROMACS entries used to create improper dihedrals.

Directive Type Description
dihedrals 2 improper dihedral
dihedrals 4 periodic improper dihedral
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Developer notes

This tpr parser is written according to the following files

• gromacs_dir/src/kernel/gmxdump.c

• gromacs_dir/src/gmxlib/tpxio.c (the most important one)

• gromacs_dir/src/gmxlib/gmxfio_rw.c

• gromacs_dir/src/gmxlib/gmxfio_xdr.c

• gromacs_dir/include/gmxfiofio.h

or their equivalent in more recent versions of Gromacs.

The function read_tpxheader() is based on the TPRReaderDevelopment notes. Functions with names starting with
read_ or do_ are trying to be similar to those in gmxdump.c or tpxio.c, those with extract_ are new.

Wherever fver_err(fver) is used, it means the tpx version problem has not been solved. Versions prior to Gromacs
4.0.x are not supported.

TRJ, MDCRD, CRDBOX (AMBER ASCII trajectory)

MDAnalysis supports reading of AMBER ASCII trajectories (“traj”) and binary trajectories (“netcdf”).

Important: In the AMBER community, these trajectories are often saved with the suffix ‘.crd’. This extension conflicts
with the CHARMM CRD format and MDAnalysis will not correctly autodetect AMBER “.crd” trajectories. Instead,
explicitly provide the format="TRJ" argument to Universe:

u = MDAnalysis.Universe("top.prmtop", "traj.crd", format="TRJ")

Reading in

Units are assumed to be the following default AMBER units:

• length: Angstrom

• time: ps

Limitations:
• Periodic boxes are only stored as box lengths A, B, C in an AMBER trajectory; the reader always assumes that

these are orthorhombic boxes.

• The trajectory does not contain time information so we simply set the time step to 1 ps (or the user could provide
it with the dt argument)

• Trajectories with fewer than 4 atoms probably fail to be read (BUG).

• If the trajectory contains exactly one atom then it is always assumed to be non-periodic (for technical reasons).

• Velocities are currently not supported as ASCII trajectories.
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TRR (GROMACS lossless trajectory file)

The GROMACS TRR trajectory is a lossless format. This file format can store coordinates, velocities, and forces.

Important: MDAnalysis currently treats trajectories with damaged frames by truncating them at the frame before.
Check that you are loading a valid file with gmx check.

Reading in

MDAnalysis uses XDR based readers for GROMACS formats, which store offsets on the disk. The offsets are used to
enable access to random frames efficiently. These offsets will be generated automatically the first time the trajectory is
opened, and offsets are generally stored in hidden *_offsets.npz files.1

Trajectories split across multiple files can be read continuously into MDAnalysis with continuous=True, in the style
of gmx trjcat.

Writing out

If the data dictionary of a Timestep contains a lambda value, this will be used for the written TRR file. Otherwise,
lambda is set to 0.

Developer notes

It sometimes can happen that the stored offsets get out off sync with the trajectory they refer to. For this the offsets also
store the number of atoms, size of the file and last modification time. If any of them change, the offsets are recalculated.
Writing of the offset file can fail when the directory where the trajectory file resides is not writable or if the disk is
full. In this case a warning message will be shown but the offsets will nevertheless be used during the lifetime of the
trajectory Reader. However, the next time the trajectory is opened, the offsets will have to be rebuilt again.

TRZ (IBIsCO and YASP trajectory)

MDAnalysis reads and writes IBIsCO / YASP TRZ binary trajectories in little-endian byte order.

TXYZ, ARC (Tinker)

MDAnalysis can read Tinker xyz files .txyz and trajectory .arc files.
1 Occasionally, MDAnalysis fails to read XDR offsets, resulting in an error. The workaround for this is to create the Universe with regenerated

offsets by using the keyword argument refresh_offsets=True, as documented in Issue 1893.
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Developer notes

Differences between Tinker format and normal xyz files:

• there is only one header line containing both the number of atoms and a comment

• column 1 contains atom numbers (starting from 1)

• column 6 contains atoms types

• the following columns indicate connectivity (atoms to which that particular atom is bonded, according to num-
bering in column 1)

XML (HOOMD)

MDAnalysis can read topology informatin from a HOOMD XML file. Masses and charges are set to zero if not present
in the XML file. Hoomd XML does not identify molecules or residues, so placeholder values are used for residue
numbers. Bonds and angles are read if present.

Hoomd XML format does not contain a node for names. The parser will look for a name node anyway, and if it doesn’t
find one, it will use the atom types as names. If the Hoomd XML file doesn’t contain a type node (it should), then all
atom types will be 'none'.

Similar to the names, the parser will try to read atom type, mass, and charge from the XML file. Therefore, they are
not present, masses and charges will not be guessed. Instead, they will be set to zero, as Hoomd uses unitless mass,
charge, etc.

XPDB (Extended PDB file)

The extended PDB reader acts virtually the same as the PDB, ENT (Standard PDB file) reader. The difference is
that extended PDB files (MDAnalysis format specifier XPDB) may contain residue sequence numbers up to 99,999
by utilizing the insertion character field of the PDB standard. Five-digit residue numbers may take up columns 23 to
27 (inclusive) instead of being confined to 23-26 (with column 27 being reserved for the insertion code in the PDB
standard).

PDB files in this format are written by popular programs such as VMD.

As extended PDB files are very similar to PDB files, tell MDAnalysis to use the Extended PDB parser by passing in
the topology_format keyword.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB

In [3]: pdb = mda.Universe(PDB)

In [4]: pdb.trajectory.format
Out[4]: ['PDB', 'ENT']

In [5]: xpdb = mda.Universe(PDB, topology_format='XPDB')

In [6]: xpdb.trajectory.format
Out[6]: 'XPDB'
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XTC (GROMACS compressed trajectory file)

The GROMACS XTC trajectory compresses data with reduced precision (3 decimal places by default). MDAnalysis
can only read coordinates from these files. See TRR (GROMACS lossless trajectory file) for uncompressed files that
provide velocity and force information.

Reading in

MDAnalysis uses XDR based readers for GROMACS formats, which store offsets on the disk. The offsets are used to
enable access to random frames efficiently. These offsets will be generated automatically the first time the trajectory is
opened, and offsets are generally stored in hidden *_offsets.npz files.1

Trajectories split across multiple files can be read continuously into MDAnalysis with continuous=True, in the style
of gmx trjcat.

XYZ trajectory

The XYZ format is a loosely defined, simple coordinate trajectory format. The implemented format definition was taken
from the VMD xyzplugin and is therefore compatible with VMD.

Reading in

As XYZ files only have atom name information, the atoms are all assigned to the same residue and segment.

The default timestep in MDAnalysis is 1 ps. A different timestep can be defined by passing in the dt argument to
Universe.

XYZ specification

Definiton used by the XYZReader and XYZWriter (and the VMD xyzplugin from whence the definition was taken):

[ comment line ] !! NOT IMPLEMENTED !! DO NOT INCLUDE
[ N ] # of atoms, required by this xyz reader plugin line 1
[ molecule name ] name of molecule (can be blank) line 2
atom1 x y z [optional data] atom name followed by xyz coords line 3
atom2 x y z [ ... ] and (optionally) other data.
...
atomN x y z [ ... ] line N+2

1 Occasionally, MDAnalysis fails to read XDR offsets, resulting in an error. The workaround for this is to create the Universe with regenerated
offsets by using the keyword argument refresh_offsets=True, as documented in Issue 1893.
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Note

• comment lines not implemented (do not include them)

• molecule name: the line is required but the content is ignored at the moment

• optional data (after the coordinates) are presently ignored

2.1.21 Analysis

The analysis module of MDAnalysis provides the tools needed to analyse your data. Several analyses are included
with the package. These range from standard algorithms (e.g. calculating root mean squared quantities) to unique
algorithms such as the path similarity analysis.

Generally these bundled analyses are contributed by various researchers who use the code for their own work. Please
refer to the individual module documentation or relevant user guide tutorials for additional references and citation
information.

If you need functionality that is not already provided in MDAnalysis, there are several ways to write your own analysis.

If you want to run your own script in parallel in MDAnalysis, here is a tutorial on make your code parallelizable.

Imports and dependencies

Analysis modules are not imported by default. In order to use them, you will need to import them separately, e.g.:

from MDAnalysis.analysis import align

Note: Several modules in MDAnalysis.analysis require additional Python packages. For example, encore makes
use of scikit-learn. The Python packages are not automatically installed with pip, although they are with conda.

Other modules require external programs. For example, hole requires the HOLE programs. You will need to install
these yourself.

2.1.22 Alignments and RMS fitting

The MDAnalysis.analysis.align and MDAnalysis.analysis.rms modules contain the functions used for align-
ing structures, aligning trajectories, and calculating root mean squared quantities.

Demonstrations of alignment are in align_structure, align_trajectory_first, and align_trajectory. Another example of
generating an average structure from an alignment is demonstrated in rmsf. Typically, trajectories need to be aligned
for RMSD and RMSF values to make sense.

Note: These modules use the fast QCP algorithm to calculate the root mean square distance (RMSD) between two
coordinate sets [The05] and the rotation matrix R that minimizes the RMSD [LAT09]. Please cite these references
when using these modules.
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2.1.23 Distances and contacts

The MDAnalysis.analysis.distances module provides functions to rapidly compute distances. These largely take
in coordinate arrays.

Residues can be determined to be in contact if atoms from the two residues are within a certain distance. Analysing the
fraction of contacts retained by a protein over at trajectory, as compared to the number of contacts in a reference frame
or structure, can give insight into folding processes and domain movements.

MDAnalysis.analysis.contacts contains functions and a class to analyse the fraction of native contacts over a
trajectory.

2.1.24 Trajectory similarity

A molecular dynamics trajectory with 𝑁 atoms can be considered through a path through 3𝑁 -dimensional molecu-
lar configuration space. MDAnalysis contains a number of algorithms to compare the conformational ensembles of
different trajectories. Most of these are in the MDAnalysis.analysis.encore module ([TPB+15]) and compare es-
timated probability distributions to measure similarity. The path similarity analysis compares the RMSD between pairs
of structures in conformation transition paths. MDAnalysis.analysis.encore also contains functions for evaluating
the conformational convergence of a trajectory using the similarity over conformation clusters or similarity in a reduced
dimensional space.

2.1.25 Structure

2.1.26 Volumetric analyses

2.1.27 Dimension reduction

A molecular dynamics trajectory with 𝑁 atoms can be considered a path through 3𝑁 -dimensional molecular config-
uration space. It remains difficult to extract important dynamics or compare trajectory similarity from such a high-
dimensional space. However, collective motions and physically relevant states can often be effectively described with
low-dimensional representations of the conformational space explored over the trajectory. MDAnalysis implements
two methods for dimensionality reduction.

Principal component analysis is a common linear dimensionality reduction technique that maps the coordinates in
each frame of your trajectory to a linear combination of orthogonal vectors. The vectors are called principal com-
ponents, and they are ordered such that the first principal component accounts for the most variance in the original
data (i.e. the largest uncorrelated motion in your trajectory), and each successive component accounts for less and less
variance. Trajectory coordinates can be transformed onto a lower-dimensional space (essential subspace) constructed
from these principal components in order to compare conformations. Your trajectory can also be projected onto each
principal component in order to visualise the motion described by that component.

Diffusion maps are a non-linear dimensionality reduction technique that embeds the coordinates of each frame onto
a lower-dimensional space, such that the distance between each frame in the lower-dimensional space represents their
“diffusion distance”, or similarity. It integrates local information about the similarity of each point to its neighours,
into a global geometry of the intrinsic manifold. This means that this technique is not suitable for trajectories where the
transitions between conformational states is not well-sampled (e.g. replica exchange simulations), as the regions may
become disconnected and a meaningful global geometry cannot be approximated. Unlike PCA, there is no explicit
mapping between the components of the lower-dimensional space and the original atomic coordinates; no physical
interpretation of the eigenvectors is immediately available.

For computing similarity, see the tutorials in Trajectory similarity.
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2.1.28 Polymers and membranes

MDAnalysis has several analyses specifically for polymers, membranes, and membrane proteins.

2.1.29 Hydrogen Bond Analysis

The MDAnalysis.analysis.hydrogen_bonds module provides methods to find and analyse hydrogen bonds in a
Universe.

Calculating hydrogen bonds: the basics

We will find the hydrogen bonds in a box of water in order to demonstrate the basic usage of HydrogenBondAnaysis.

Last updated: December 2022

Minimum version of MDAnalysis: 2.0.0-dev0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• numpy

• matplotlib

See also
• Calculating hydrogen bonds: advanced selections

• Calculating hydrogen bond lifetimes

Note
Please cite Smith et al. (2018) when using HydrogenBondAnaysis in published work.

[1]: import pickle
import numpy as np
np.set_printoptions(linewidth=100)
import pandas as pd

import matplotlib.pyplot as plt

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import waterPSF, waterDCD
from MDAnalysis.analysis.hydrogenbonds import HydrogenBondAnalysis

# the next line is necessary to display plots in Jupyter
%matplotlib inline
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Loading files

We will load a small water-only system containing 5 water molecules and 10 frames then find the hydrogen bonds
present at each frame.

[2]: u = mda.Universe(waterPSF, waterDCD)

/Users/lily/pydev/mdanalysis/package/MDAnalysis/coordinates/DCD.py:165:␣
→˓DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts␣
→˓while other readers update self.ts inplace. This behavior will be changed in 3.0 to be␣
→˓the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/
→˓issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Warning
It is highly recommended that a topology with bond information is used (e.g. PSF, TPR, PRMTOP), as this is the
only way to guarantee the correct identification of donor-hydrogen pairs.

Hydrogen bonds

In molecular dynamics simulations, hydrogen bonds are typically identified via the following geometric criteria:

1. the donor-acceptor distance (𝑟𝐷𝐴) must be less than a specified cutoff, typically 3

2. the donor-hydrogen-acceptor angle (𝜃𝐷𝐻𝐴) must be greater than a specified cutoff, typically 150°

302 Chapter 2. Participating



MDAnalysis User Guide

Find water-water hydrogen bonds

Basic usage of HydrogenBondAnalysis involvees passing an acceptor atom selection (acceptors_sel) and a hydrogen
atom selection (hydrogens_sel) to HydrogenBondAnalysis. By not providing a donor atom selection (donor_sel)
we will use the topology bond information to find donor-hydrogen pairs.

In the following cell, acceptors_sel="name OH2" and hydrogens_sel="name H1 H2" will select the oxygen and
hydrogen atoms, respectively, of water. The names correspond to those for the CHARMM TIP3P water model and may
be different for other force fields.

[3]: hbonds = HydrogenBondAnalysis(
universe=u,
donors_sel=None,
hydrogens_sel="name H1 H2",
acceptors_sel="name OH2",
d_a_cutoff=3.0,
d_h_a_angle_cutoff=150,
update_selections=False

)

Note
For a performance boost, update_selections can be set to False.

However, always set update_selections to True if you think that your selection will update over time. For exam-
ple, the number of oxygen atoms within 3.0 may change over time if you choose acceptors_sel="name OH2 and
around 3.0 protein.

See also the MDAnalysis documentation on updating AtomGroups.

We then use the run() method to perform the analysis. If we do not set the start, stop, and step for frames to
analyse, all frames will be used.

[4]: hbonds.run(
start=None,
stop=None,
step=None,
verbose=True

)

0%| | 0/10 [00:00<?, ?it/s]

[4]: <MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis at 0x14115fdf0>
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Accessing the results

The results are stored as a numpy array in the hbonds.results.hbonds attribute. The array is of shape (𝑁hbonds, 6).

[5]: # We see there are 27 hydrogen bonds in total
print(hbonds.results.hbonds.shape)

(27, 6)

Each row of the results array contains the follwing information on a single hydrogen bond:

[frame, donor_index, hydrogen_index, acceptor_index, DA_distance, DHA_angle]

Let’s take a look at the first hydrogen bond found:

[6]: print(hbonds.results.hbonds[0])

[ 0. 9. 10. 3. 2.82744082 150.48955173]

This hydrogen bond was found at frame 0. The donor, hydrogen, and acceptor atoms have indices 9, 10, and 3, re-
spectively. There is a distance of 2.83 between the donor and acceptor atoms, and an angle of 150° made by the
donor-hydrogen-acceptor atoms.

The frame number and atom indices can be used to select the atoms involved in the above hydrogen bond. However, as
the results array is of type float64, these values must first be cast to integers:

[7]: hbonds.results.hbonds.dtype

[7]: dtype('float64')

[8]: first_hbond = hbonds.results.hbonds[0]

[9]: frame, donor_ix, hydrogen_ix, acceptor_ix = first_hbond[:4].astype(int)

[10]: # select the correct frame and the atoms involved in the hydrogen bond
u.trajectory[frame]
atoms = u.atoms[[donor_ix, hydrogen_ix, acceptor_ix]]

[11]: atoms

[11]: <AtomGroup with 3 atoms>

For clarity, below we define constants that will be used throughout the rest of the notebook to access the relevant column
of each hbond row

[12]: FRAME = 0
DONOR = 1
HYDROGEN = 2
ACCEPTOR = 3
DISTANCE = 4
ANGLE = 5
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Helper functions

The are three helper functions that can be used to quickly post-process the results.

1. Count by time. Counts the total number of hydrogen bonds at each frame

[13]: plt.plot(hbonds.times, hbonds.count_by_time(), lw=2)

plt.title("Number of hydrogon bonds over time", weight="bold")
plt.xlabel("Time (ps)")
plt.ylabel(r"$N_{HB}$")

plt.show()

2. Count by type. Counts the total number of each type of hydrogen bond.

A type is a unique combination of donor residue name, donor atom type, acceptor residue name, and acceptor atom
type.

[14]: hbonds.count_by_type()

[14]: array([['TIP3:OT', 'TIP3:OT', '27']], dtype='<U21')

Each row contains a unique hydrogen bond type. The three columns correspond to:

1. the donor resname and atom name (here, the OT atom of the TIP3 water residue)
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2. the acceptor resname and atom name (here, the OT atom of the TIP3 water residue)

3. the total count

The average number of each type of hydrogen bond formed at each frame is likely more informative than the total
number over the trajectory. This can be calculated for each hydrogen bond type as follows:

[15]: for donor, acceptor, count in hbonds.count_by_type():

donor_resname, donor_type = donor.split(":")
n_donors = u.select_atoms(f"resname {donor_resname} and type {donor_type}").n_atoms

# average number of hbonds per donor molecule per frame
mean_count = 2 * int(count) / (hbonds.n_frames * n_donors) # multiply by two as␣

→˓each hydrogen bond involves two water molecules
print(f"{donor} to {acceptor}: {mean_count:.2f}")

TIP3:OT to TIP3:OT: 1.08

Note
In a water-only system the average number of hydrogen bonds per water molecule should be around 3.3, depending on
temperature and forcefield. We don’t see this due to the small system size (15 water molecules).

3. Count by ids. Counts the total number of each hydrogen bond formed between specific atoms.

[16]: hbonds.count_by_ids()

[16]: array([[12, 14, 9, 10],
[ 9, 10, 3, 9],
[ 3, 5, 0, 4],
[ 0, 1, 6, 3],
[ 6, 7, 12, 1]])

Each row contains a unique hydrogen bond. The four columns correspond to:

1. the donor atom index

2. the hydrogen atom index

3. the acceptor atom index

4. the total count

The array is sorted in descending total count. You can check which atoms are involved in the most frequently observed
hydrogen bond:

[17]: counts = hbonds.count_by_ids()
most_common = counts[0]

print(f"Most common donor: {u.atoms[most_common[0]]}")
print(f"Most common hydrogen: {u.atoms[most_common[1]]}")
print(f"Most common acceptor: {u.atoms[most_common[2]]}")
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Most common donor: <Atom 13: OH2 of type OT of resname TIP3, resid 21 and segid WAT>
Most common hydrogen: <Atom 15: H2 of type HT of resname TIP3, resid 21 and segid WAT>
Most common acceptor: <Atom 10: OH2 of type OT of resname TIP3, resid 15 and segid WAT>

Further analysis

There are many different analyses you may want to perform after finding hydrogen bonds. Below we will calculate the
mean number of hydrogen bonds as a function of 𝑧 position of the donor atom.

[18]: # bins in z for the histogram
bin_edges = np.linspace(-25, 25, 51)
bin_centers = bin_edges[:-1] + 0.5

# results array (this is faster and more memory efficient than appending to a list)
counts = np.full(bin_centers.size, fill_value=0.0)

[19]: for frame, donor_ix, *_ in hbonds.results.hbonds:

u.trajectory[frame.astype(int)]
donor = u.atoms[donor_ix.astype(int)]

zpos = donor.position[2]
hist, *_ = np.histogram(zpos, bins=bin_edges)
counts += hist * 2 # multiply by two as each hydrogen bond involves two water␣

→˓molecules

counts /= hbonds.n_frames

[20]: plt.plot(bin_centers, counts, lw=2)

plt.title(r"Number of hydrogen bonds as a funcion of height in $z$", weight="bold")
plt.xlabel(r"$z\ \rm (\AA)$")
plt.ylabel(r"$N_{HB}$")

plt.show()
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You may wish to find the number of hydrogen bonds in 𝑧 per unit area in 𝑥𝑦, rather than the total number a each 𝑧
position. To do this, simply divide counts by the mean area in 𝑥𝑦:

[21]: mean_xy_area = np.mean(
[np.prod(ts.dimensions[:2]) for ts in u.trajectory[hbonds.frames]]

)
counts /= mean_xy_area

Note
It is likely you will want to calculate the distance from an interface, such as a lipid membrane, rather than the absolute
position in 𝑧. For example, if you have a bilayer that is centered at 0, you might define your interface as the mean
position in 𝑧 of the phosphorous atoms in the upper leaflet of the bilayer:

headgroup_atoms = u.select_atoms(“name P”) interface_zpos = np.mean(headgroup_atoms.positions[:, 2])

zpos = donors.positions[:,2] - interface_zpos
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Store data

There are various ways of storing the results from the analysis.

1. You can persist the HydrogenBondsAnalysis object using pickle (or joblib)

[22]: with open("hbonds.pkl", 'wb') as f:
pickle.dump(hbonds, f)

[23]: with open("hbonds.pkl", 'rb') as f:
hbonds = pickle.load(f)

2. You can extract the results and store the numpy array

[24]: np.save("hbonds.npy", hbonds.results.hbonds)

3. You can create a Pandas DataFrame with more information about hydrogen bonding atoms, which may make
some further analysis easier.

[25]: df = pd.DataFrame(hbonds.results.hbonds[:, :DISTANCE].astype(int),
columns=["Frame",

"Donor_ix",
"Hydrogen_ix",
"Acceptor_ix",])

df["Distances"] = hbonds.results.hbonds[:, DISTANCE]
df["Angles"] = hbonds.results.hbonds[:, ANGLE]

df["Donor resname"] = u.atoms[df.Donor_ix].resnames
df["Acceptor resname"] = u.atoms[df.Acceptor_ix].resnames
df["Donor resid"] = u.atoms[df.Donor_ix].resids
df["Acceptor resid"] = u.atoms[df.Acceptor_ix].resids
df["Donor name"] = u.atoms[df.Donor_ix].names
df["Acceptor name"] = u.atoms[df.Acceptor_ix].names

[26]: df.to_csv("hbonds.csv", index=False)
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Calculating hydrogen bonds: advanced selections

We will find all intramolcular hydrogen bonds of a protein without passing any atom selections. We will also look at
how to use more advanced atom selections than we saw in Calculating hydrogen bonds: the basiscs.

Last updated: December 2022

Minimum version of MDAnalysis: 2.0.0-dev0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• numpy

See also
• Calculating hydrogen bonds: the basics

• Calculating hydrogen bond lifetimes

Note
Please cite Smith et al. (2018) when using HydrogenBondAnaysis in published work.

[1]: import numpy as np

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis.hydrogenbonds import HydrogenBondAnalysis

Loading files

[2]: u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/
→˓coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent␣
→˓timesteps by copying self.ts while other readers update self.ts inplace. This␣
→˓behaviour will be changed in 3.0 to be the same as other readers
warnings.warn("DCDReader currently makes independent timesteps"

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])
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Find all hydrogen bonds

The simplest use case is to allow HydrogenBondAnalysis to guess the acceptor and hydrogen atoms, then to identify
donor-hydrogen pairs via the bond information in the topology.

Accetptor and hydrogen atoms are guessed based on the mass and partial charge of the atoms.

[3]: hbonds = HydrogenBondAnalysis(universe=u)

[4]: hbonds.run(verbose=True)

0%| | 0/98 [00:00<?, ?it/s]

[4]: <MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis at 0x7fce51309190>

Use guess_acceptors and guess_hydrogens to create atom selections

It is also possible to use generated hydrogens_sel and acceptors_sel via the guess_hydrogens and
guess_acceptors class methods.

This selection strings may then be modified prior to calling run, or a subset of the universe may be used to guess the
atoms. For example, below we will find hydrogens and acceptors belonging to specific residues.

[5]: hbonds = HydrogenBondAnalysis(universe=u)
hbonds.hydrogens_sel = hbonds.guess_hydrogens("resname ARG HIS LYS")
hbonds.acceptors_sel = hbonds.guess_acceptors("resname ARG HIS LYS")

[6]: hbonds.run(verbose=True)

0%| | 0/98 [00:00<?, ?it/s]

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/
→˓analysis/hydrogenbonds/hbond_analysis.py:751: UserWarning: No hydrogen bonds were␣
→˓found given angle of 150 between Donor, None, and Acceptor, (resname ARG and name NE)␣
→˓or (resname ARG and name NH1) or (resname ARG and name NH2) or (resname ARG and name␣
→˓O) or (resname LYS and name O).
warnings.warn(

[6]: <MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis at 0x7fce50983790>

We can check which atoms were used in the analysis:

[7]: print(f"hydrogen_sel = {hbonds.hydrogens_sel}")
print(f"acceptors_sel = {hbonds.acceptors_sel}")

hydrogen_sel = (resname ARG and name HE) or (resname ARG and name HH11) or (resname ARG␣
→˓and name HH12) or (resname ARG and name HH21) or (resname ARG and name HH22) or␣
→˓(resname ARG and name HN) or (resname LYS and name HN) or (resname LYS and name HZ1)␣
→˓or (resname LYS and name HZ2) or (resname LYS and name HZ3)
acceptors_sel = (resname ARG and name NE) or (resname ARG and name NH1) or (resname ARG␣
→˓and name NH2) or (resname ARG and name O) or (resname LYS and name O)
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More advanced selections

Slightly more complex selection strings are also possible. For example, to find hydrogen bonds involving the protein
and water within 10 Å of the protein:

[8]: hbonds = HydrogenBondAnalysis(universe=u)

protein_hydrogens_sel = hbonds.guess_hydrogens("protein")
protein_acceptors_sel = hbonds.guess_acceptors("protein")

water_hydrogens_sel = "resname TIP3 and name H1 H2"
water_acceptors_sel = "resname TIP3 and name OH2"

hbonds.hydrogens_sel = f"({protein_hydrogens_sel}) or ({water_hydrogens_sel} and around␣
→˓10 not resname TIP3)"
hbonds.acceptors_sel = f"({protein_acceptors_sel}) or ({water_acceptors_sel} and around␣
→˓10 not resname TIP3)"

[9]: hbonds.run(verbose=True)

0%| | 0/98 [00:00<?, ?it/s]

[9]: <MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis at 0x7fce5098a250>

Note
The Universe we are analysing has the water removed. The above example is for illustrative purposes only.

Hydrogen bonds between specific groups

To calculate the hydrogen bonds between different groups, for example protein and water, one can use the between
keyword. Below we will find protein-water and protein-protein hydrogen bonds, but not water-water hydrogen bonds.
We do this by passing atom selection for the groups we wish to find hydrogen bonds between.

[10]: hbonds = HydrogenBondAnalysis(
universe=u,
between=[

["protein", "resname TIP3"], # for protein-water hbonds
["protein", "protein"] # for protein-protein hbonds

]
)

[11]: hbonds.run(verbose=True)

0%| | 0/98 [00:00<?, ?it/s]

[11]: <MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis at 0x7fce5096fd60>

Note
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The Universe we are analysing has the water removed. The above example is for illustrative purposes only.
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Calculating hydrogen bond lifetimes

We will calculate the lifetime of intramolecular hydrogen bonds in a protein.

Last updated: December 2022

Minimum version of MDAnalysis: 2.0.0-dev0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• numpy

• matplotlib

See also
• Calculating hydrogen bonds: the basics

• Calculating hydrogen bonds: advanced selections

Note
Please cite Smith et al. (2018) when using HydrogenBondAnaysis in published work.

[1]: from tqdm.auto import tqdm
import numpy as np
import matplotlib.pyplot as plt

import MDAnalysis as mda
(continues on next page)
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(continued from previous page)

from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis.hydrogenbonds import HydrogenBondAnalysis

import warnings
# suppress some MDAnalysis warnings
warnings.filterwarnings('ignore')

Loading files

[2]: u = mda.Universe(PSF, DCD)

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

Find all hydrogen bonds

First, find the hydrogen bonds.

[3]: hbonds = HydrogenBondAnalysis(universe=u)

[4]: hbonds.run(verbose=True)

0%| | 0/98 [00:00<?, ?it/s]

[4]: <MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis at 0x7f2cca7db1c0>

Calculate hydrogen bond lifetimes

The hydrogen bond lifetime is calculated via the time autocorrelation function of the presence of a hydrogen bond:

𝐶(𝜏) =

⟨
ℎ𝑖𝑗(𝑡0)ℎ𝑖𝑗(𝑡0 + 𝜏)

ℎ𝑖𝑗(𝑡0)2

⟩

where ℎ𝑖𝑗 indicates the presence of a hydrogen bond between atoms 𝑖 and 𝑗:

• ℎ𝑖𝑗 = 1 if there is a hydrogen bond

• ℎ𝑖𝑗 = 0 if there is no hydrogen bond

ℎ𝑖𝑗(𝑡0) = 1 indicates there is a hydrogen bond between atoms 𝑖 and 𝑗 at a time origin 𝑡0, and ℎ𝑖𝑗(𝑡0+ 𝜏) = 1 indicates
these atoms remain hydrogen bonded throughout the period 𝑡0 to 𝑡0 + 𝜏 . To improve statistics, multiple time origins,
𝑡0, are used in the calculation and the average is taken over all time origins.

See Gowers and Carbonne (2015) for further discussion on hydrogen bonds lifetimes.

Note
The period between time origins, 𝑡0, should be chosen such that consecutive 𝑡0 are uncorrelated.

The hbonds.lifetime method calculates the above time autocorrelation function. The period between time origins
is set using window_step, and the maximum value of 𝜏 (in frames) is set using tau_max.
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[5]: tau_max = 25
window_step = 1

[6]: tau_frames, hbond_lifetime = hbonds.lifetime(
tau_max=tau_max,
window_step=window_step

)

[7]: tau_times = tau_frames * u.trajectory.dt
plt.plot(tau_times, hbond_lifetime, lw=2)

plt.title(r"Hydrogen bond lifetime", weight="bold")
plt.xlabel(r"$\tau\ \rm (ps)$")
plt.ylabel(r"$C(\tau)$")

plt.show()
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Calculating the time constant

To obtain the hydrogen bond lifetime, you can fit a biexponential to the time autocorrelation curve. We will fit the
following biexponential:

𝐴 exp(−𝑡/𝜏1) +𝐵 exp(−𝑡/𝜏2)

where 𝜏1 and 𝜏2 represent two time constants - one corresponding to a short-timescale process and the other to a longer
timescale process. 𝐴 and𝐵 will sum to 1, and they represent the relative importance of the short- and longer-timescale
processes in the overall autocorrelation curve.

[8]: def fit_biexponential(tau_timeseries, ac_timeseries):
"""Fit a biexponential function to a hydrogen bond time autocorrelation function

Return the two time constants
"""
from scipy.optimize import curve_fit

def model(t, A, tau1, B, tau2):
"""Fit data to a biexponential function.
"""
return A * np.exp(-t / tau1) + B * np.exp(-t / tau2)

params, params_covariance = curve_fit(model, tau_timeseries, ac_timeseries, [1, 0.5,␣
→˓1, 2])

fit_t = np.linspace(tau_timeseries[0], tau_timeseries[-1], 1000)
fit_ac = model(fit_t, *params)

return params, fit_t, fit_ac

[9]: params, fit_t, fit_ac = fit_biexponential(tau_times, hbond_lifetime)

[10]: # Plot the fit
plt.plot(tau_times, hbond_lifetime, label="data")
plt.plot(fit_t, fit_ac, label="fit")

plt.title(r"Hydrogen bond lifetime", weight="bold")
plt.xlabel(r"$\tau\ \rm (ps)$")
plt.ylabel(r"$C(\tau)$")

plt.legend()
plt.show()
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[11]: # Check the decay time constant
A, tau1, B, tau2 = params
time_constant = A * tau1 + B * tau2
print(f"time_constant = {time_constant:.2f} ps")

time_constant = 6.14 ps

Intermittent lifetime

The above example shows you how to calculate the continuous hydrogen bond lifetime. This means that the hydrogen
bond must be present at every frame from 𝑡0 to 𝑡0+𝜏 . To allow for small fluctuations in the DA distance or DHA angle,
the intermittent hydrogen bond lifetime may be calculated. This allows a hydrogen bond to break for up to a specified
number of frames and still be considered present.

In the lifetime method, the intermittency argument is used to set the maxium number of frames for which a
hydrogen bond is allowed to break. The default is intermittency=0, which means that if a hydrogen bond is missing
at any frame between 𝑡0 and 𝑡0 + 𝜏 , it will not be considered present at 𝑡0 + 𝜏 . This is equivalent to the continuous
lifetime. However, with a value of intermittency=2, all hydrogen bonds are allowed to break for up to a maximum
of consecutive two frames.

Below we see how changing the intermittency affects the hydrogen bond lifetime.
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[12]: tau_max = 25
window_step = 1
intermittencies = [0, 1, 10, 100]

[13]: for intermittency in intermittencies:

tau_frames, hbond_lifetime = hbonds.lifetime(
tau_max=tau_max,
window_step=window_step,
intermittency=intermittency

)

times_times = tau_frames * u.trajectory.dt
plt.plot(times_times, hbond_lifetime, lw=2, label=intermittency)

plt.title(r"Hydrogen bond lifetime", weight="bold")
plt.xlabel(r"$\tau\ \rm (ps)$")
plt.ylabel(r"$C(\tau)$")

plt.legend(title="Intermittency=", loc=(1.02, 0.0))
plt.show()
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Hydrogen bond lifetime of individual hydrogen bonds

Let’s first find the 3 most prevalent hydrogen bonds.

[14]: hbonds = HydrogenBondAnalysis(universe=u)

[15]: hbonds.run(verbose=True)

0%| | 0/98 [00:00<?, ?it/s]

[15]: <MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis at 0x7f2cca7d3a60>

[16]: # Print donor, hydrogen, acceptor and count info for these hbonds
counts = hbonds.count_by_ids()
lines = []
for donor, hydrogen, acceptor, count in counts[:10]:

d, h, a = u.atoms[donor], u.atoms[hydrogen], u.atoms[acceptor]
lines.append(f"{d.resname}-{d.resid}-{d.name}\t{h.name}\t{a.resname}-{a.resid}-{a.

→˓name}\tcount={count}")
for line in sorted(lines):

print(line)

ARG-124-NH2 HH22 GLU-143-OE1 count=93
ARG-2-NH1 HH11 ASP-104-OD1 count=96
ARG-206-NE HE GLU-210-OE1 count=93
ARG-71-NH2 HH22 ASP-76-OD1 count=98
LYS-200-NZ HZ2 ASP-208-OD2 count=93
LYS-211-NZ HZ3 GLU-204-OE1 count=92
THR-199-OG1 HG1 ASP-197-OD1 count=95
TYR-133-OH HH ASP-146-OD1 count=95
TYR-193-OH HH GLU-108-OE1 count=97
TYR-24-OH HH GLY-214-OT2 count=95

Now we’ll calculate the lifetime of these hydrogen bonds. To do this, the simplest way is to run
HydrogenBondAnalysis for each hydrogen bond then use the lifetime method. It is very efficient to find hydrogen
bonds between two specific atoms, especially with update_selections=False.

[17]: tau_max = 25
window_step = 1
intermittency = 0

[18]: hbond_lifetimes = []
labels = [] # for plotting

for hbond in counts[:3]:

# find hbonds between specific atoms
d_ix, h_ix, a_ix = hbond[:3]
tmp_hbonds = HydrogenBondAnalysis(

universe=u,
hydrogens_sel=f"index {h_ix}",
acceptors_sel=f"index {a_ix}",
update_selections=False

)
(continues on next page)
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tmp_hbonds.run()

# calculate lifetime
taus, hbl, = tmp_hbonds.lifetime(

tau_max=tau_max,
intermittency=intermittency

)
hbond_lifetimes.append(hbl)

# label for plotting
donor, acceptor = u.atoms[d_ix], u.atoms[a_ix]
label = f"{donor.resname}:{donor.resid} to {acceptor.resname}:{acceptor.resid}"
labels.append(label)

hbond_lifetimes = np.array(hbond_lifetimes)
labels = np.array(labels)

[19]: # Plot the lifetimes
times = taus * u.trajectory.dt
for hbl, label in zip(hbond_lifetimes, labels):

plt.plot(times, hbl, label=label, lw=2)

plt.title(r"Hydrogen bond lifetime of specific hbonds", weight="bold")
plt.xlabel(r"$\tau\ \rm (ps)$")
plt.ylabel(r"$C(\tau)$")

plt.legend(ncol=1, loc=(1.02, 0))
plt.show()
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Note
The shape of these curves indicates we have poor statistics in our lifetime calculations - we used only 100 frames and
consider a single hydrogen bond.

The curve should decay smoothly toward 0, as seen in the first hydrogen bond lifetime plot we produced in this notebook.
If the curve does not decay smoothly, more statistics are required either by increasing the value of tau_max, using a
greater number of time origins, or increasing the length of your simulation.

See Gowers and Carbonne (2015) for further discussion on hydrogen bonds lifetimes.
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2.1.30 Writing your own trajectory analysis

We create our own analysis methods for calculating the radius of gyration of a selection of atoms.

This can be done three ways, from least to most flexible:

1. Running the analysis directly from a function

2. Turning a function into a class

3. Writing your own class

The building blocks and methods shown here are only suitable for analyses that involve iterating over the trajectory
once.

If you implement your own analysis method, please consider contributing it to the MDAnalysis codebase!

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 2.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, DCD2
from MDAnalysis.analysis.base import (AnalysisBase,

AnalysisFromFunction,
analysis_class)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Radius of gyration

Let’s start off by defining a standalone analysis function.

The radius of gyration of a structure measures how compact it is. In GROMACS, it is calculated as follows:

𝑅𝑔 =

√︃∑︀
𝑖𝑚𝑖r2𝑖∑︀
𝑖𝑚𝑖

where 𝑚𝑖 is the mass of atom 𝑖 and r𝑖 is the position of atom 𝑖, relative to the center-of-mass of the selection.

The radius of gyration around each axis can also be determined separately. For example, the radius of gyration around
the x-axis:

𝑅𝑖,𝑥 =

√︃∑︀
𝑖𝑚𝑖[𝑟2𝑖,𝑦 + 𝑟2𝑖,𝑧]∑︀

𝑖𝑚𝑖
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Below, we define a function that takes an AtomGroup and calculates the radii of gyration. We could write this function
to only need the AtomGroup. However, we also add in a masses argument and a total_mass keyword to avoid
recomputing the mass and total mass for each frame.

[2]: def radgyr(atomgroup, masses, total_mass=None):
# coordinates change for each frame
coordinates = atomgroup.positions
center_of_mass = atomgroup.center_of_mass()

# get squared distance from center
ri_sq = (coordinates-center_of_mass)**2
# sum the unweighted positions
sq = np.sum(ri_sq, axis=1)
sq_x = np.sum(ri_sq[:,[1,2]], axis=1) # sum over y and z
sq_y = np.sum(ri_sq[:,[0,2]], axis=1) # sum over x and z
sq_z = np.sum(ri_sq[:,[0,1]], axis=1) # sum over x and y

# make into array
sq_rs = np.array([sq, sq_x, sq_y, sq_z])

# weight positions
rog_sq = np.sum(masses*sq_rs, axis=1)/total_mass
# square root and return
return np.sqrt(rog_sq)

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[3]: u = mda.Universe(PSF, DCD)
protein = u.select_atoms('protein')

u2 = mda.Universe(PSF, DCD2)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Creating an analysis from a function

MDAnalysis.analysis.base.AnalysisFromFunction can create an analysis from a function that works on Atom-
Groups. It requires the function itself, the trajectory to operate on, and then the arguments / keyword arguments nec-
essary for the function.

[4]: rog = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

rog.run()
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[4]: <MDAnalysis.analysis.base.AnalysisFromFunction at 0x7f901a31bca0>

Running the analysis iterates over the trajectory. The output is saved in rog.results.timeseries, which has the
same number of rows, as frames in the trajectory. You can access the results both at rog.results.timeseries and
rog.results['timeseries']:

[5]: rog.results['timeseries'].shape

[5]: (98, 4)

gives the same outputs as:

[6]: rog.results.timeseries.shape

[6]: (98, 4)

[7]: labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(rog.results['timeseries'].T, labels):

plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[7]: Text(0.5, 0, 'Frame')

You can also re-run the analysis with different frame selections.

Below, we start from the 10th frame and take every 8th frame until the 80th. Note that the slice includes the start
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frame, but does not include the stop frame index (much like the actual range() function).

[8]: rog_10 = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

rog_10.run(start=10, stop=80, step=7)
rog_10.results['timeseries'].shape

[8]: (10, 4)

[9]: for col, label in zip(rog_10.results['timeseries'].T, labels):
plt.plot(col, label=label)

plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[9]: Text(0.5, 0, 'Frame')
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Transforming a function into a class

While the AnalysisFromFunction is convenient for quick analyses, you may want to turn your function into a class
that can be applied to many different trajectories, much like other MDAnalysis analyses.

You can apply analysis_class to any function that you can run with AnalysisFromFunction to get a class.

[10]: RadiusOfGyration = analysis_class(radgyr)

To run the analysis, pass exactly the same arguments as you would for AnalysisFromFunction.

[11]: rog_u1 = RadiusOfGyration(u.trajectory, protein,
protein.masses,
total_mass=np.sum(protein.masses))

rog_u1.run()

[11]: <MDAnalysis.analysis.base.analysis_class.<locals>.WrapperClass at 0x7f9000500820>

As with AnalysisFromFunction, the results are in results.

[12]: for col, label in zip(rog_u1.results['timeseries'].T, labels):
plt.plot(col, label=label)

plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[12]: Text(0.5, 0, 'Frame')

You can reuse the class for other trajectories and selections.
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[13]: ca = u2.select_atoms('name CA')

rog_u2 = RadiusOfGyration(u2.trajectory, ca,
ca.masses,
total_mass=np.sum(ca.masses))

rog_u2.run()

[13]: <MDAnalysis.analysis.base.analysis_class.<locals>.WrapperClass at 0x7f9000474df0>

[14]: for col, label in zip(rog_u2.results['timeseries'].T, labels):
plt.plot(col, label=label)

plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[14]: Text(0.5, 0, 'Frame')
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Creating your own class

Although AnalysisFromFunction and analysis_class are convenient, they can be too limited for complex algo-
rithms. You may need to write your own class.

MDAnalysis provides the MDAnalysis.analysis.base.AnalysisBase class as a template for creating multiframe
analyses. This class automatically sets up your trajectory reader for iterating, and includes an optional progress meter.

The analysis is always run by calling run(). AnalysisFromFunction actually subclasses AnalysisBase, and
analysis_class returns a subclass of AnalysisFromFunction, so the behaviour of run() remains identical.

1. Define __init__

You can define a new analysis by subclassing AnalysisBase. Initialise the analysis with the __init__ method, where
you must pass the trajectory that you are working with to AnalysisBase.__init__(). You can also pass in the
verbose keyword. If verbose=True, the class will set up a progress meter for you.

2. Define your analysis in _single_frame() and other methods

Implement your functionality as a function over each frame of the trajectory by defining _single_frame(). This
function gets called for each frame of your trajectory.

You can also define _prepare() and _conclude() to set your analysis up before looping over the trajectory, and to
finalise the results that you have prepared. In order, run() calls:

• _prepare()

• _single_frame() (for each frame of the trajectory that you are iterating over)

• _conclude()

Class subclassed from AnalysisBase can make use of several properties when defining the methods above:

• self.start: frame index to start analysing from. Defined in run()

• self.stop: frame index to stop analysis. Defined in run()

• self.step: number of frames to skip in between. Defined in run()

• self.n_frames: number of frames to analyse over. This can be helpful in initialising result arrays.

• self._verbose: whether to be verbose.

• self._trajectory: the actual trajectory

• self._ts: the current timestep object

• self._frame_index: the index of the currently analysed frame. This is not the absolute index of the frame in
the trajectory overall, but rather the relative index of the frame within the list of frames to be analysed. You can
think of it as the number of times that self._single_frame() has already been called.

Below, we create the class RadiusOfGyration2 to run the analysis function that we have defined above, and add extra
information such as the time of the corresponding frame.

[15]: class RadiusOfGyration2(AnalysisBase): # subclass AnalysisBase

def __init__(self, atomgroup, verbose=True):
"""
Set up the initial analysis parameters.

(continues on next page)
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"""
# must first run AnalysisBase.__init__ and pass the trajectory
trajectory = atomgroup.universe.trajectory
super(RadiusOfGyration2, self).__init__(trajectory,

verbose=verbose)
# set atomgroup as a property for access in other methods
self.atomgroup = atomgroup
# we can calculate masses now because they do not depend
# on the trajectory frame.
self.masses = self.atomgroup.masses
self.total_mass = np.sum(self.masses)

def _prepare(self):
"""
Create array of zeroes as a placeholder for results.
This is run before we begin looping over the trajectory.
"""
# This must go here, instead of __init__, because
# it depends on the number of frames specified in run().
self.results = np.zeros((self.n_frames, 6))
# We put in 6 columns: 1 for the frame index,
# 1 for the time, 4 for the radii of gyration

def _single_frame(self):
"""
This function is called for every frame that we choose
in run().
"""
# call our earlier function
rogs = radgyr(self.atomgroup, self.masses,

total_mass=self.total_mass)
# save it into self.results
self.results[self._frame_index, 2:] = rogs
# the current timestep of the trajectory is self._ts
self.results[self._frame_index, 0] = self._ts.frame
# the actual trajectory is at self._trajectory
self.results[self._frame_index, 1] = self._trajectory.time

def _conclude(self):
"""
Finish up by calculating an average and transforming our
results into a DataFrame.
"""
# by now self.result is fully populated
self.average = np.mean(self.results[:, 2:], axis=0)
columns = ['Frame', 'Time (ps)', 'Radius of Gyration',

'Radius of Gyration (x-axis)',
'Radius of Gyration (y-axis)',
'Radius of Gyration (z-axis)',]

self.df = pd.DataFrame(self.results, columns=columns)

Because RadiusOfGyration2 calculates the masses of the selected AtomGroup itself, we do not need to pass it in
ourselves.
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[16]: rog_base = RadiusOfGyration2(protein, verbose=True).run()

0%| | 0/98 [00:00<?, ?it/s]

As calculated in _conclude(), the average radii of gyrations are at rog.average.

[17]: rog_base.average

[17]: array([18.26549552, 12.85342131, 15.37359575, 16.29185734])

The results are available at rog.results as an array or rog.df as a DataFrame.

[18]: rog_base.df

[18]: Frame Time (ps) Radius of Gyration Radius of Gyration (x-axis) \
0 0.0 1.000000 16.669018 12.679625
1 1.0 2.000000 16.673217 12.640025
2 2.0 3.000000 16.731454 12.696454
3 3.0 4.000000 16.722283 12.677194
4 4.0 5.000000 16.743961 12.646981
.. ... ... ... ...
93 93.0 93.999992 19.562034 13.421683
94 94.0 94.999992 19.560575 13.451335
95 95.0 95.999992 19.550571 13.445914
96 96.0 96.999991 19.568381 13.443243
97 97.0 97.999991 19.591575 13.442750

Radius of Gyration (y-axis) Radius of Gyration (z-axis)
0 13.749343 14.349043
1 13.760545 14.382960
2 13.801342 14.429350
3 13.780732 14.444711
4 13.814553 14.489046
.. ... ...
93 16.539112 17.653968
94 16.508649 17.656678
95 16.500640 17.646130
96 16.507396 17.681294
97 16.537926 17.704494

[98 rows x 6 columns]

Using this DataFrame we can easily plot our results.

[19]: ax = rog_base.df.plot(x='Time (ps)', y=rog_base.df.columns[2:])
ax.set_ylabel('Radius of gyration (A)')

[19]: Text(0, 0.5, 'Radius of gyration (A)')
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We can also run the analysis over a subset of frames, the same as the output from AnalysisFromFunction and
analysis_class.

[20]: rog_base_10 = RadiusOfGyration2(protein, verbose=True)
rog_base_10.run(start=10, stop=80, step=7)

0%| | 0/10 [00:00<?, ?it/s]

[20]: <__main__.RadiusOfGyration2 at 0x7f90006ca9d0>

[21]: rog_base_10.results.shape

[21]: (10, 6)

[22]: rog_base_10.df

[22]: Frame Time (ps) Radius of Gyration Radius of Gyration (x-axis) \
0 10.0 10.999999 16.852127 12.584163
1 17.0 17.999998 17.019587 12.544784
2 24.0 24.999998 17.257429 12.514341
3 31.0 31.999997 17.542565 12.522147
4 38.0 38.999997 17.871241 12.482385
5 45.0 45.999996 18.182243 12.533023
6 52.0 52.999995 18.496493 12.771949
7 59.0 59.999995 18.839346 13.037335
8 66.0 66.999994 19.064333 13.061491

(continues on next page)

2.1. Communications 331



MDAnalysis User Guide

(continued from previous page)

9 73.0 73.999993 19.276639 13.161863

Radius of Gyration (y-axis) Radius of Gyration (z-axis)
0 14.001589 14.614469
1 14.163276 14.878262
2 14.487021 15.137873
3 14.747461 15.530339
4 15.088865 15.977444
5 15.451285 16.290153
6 15.667003 16.603098
7 15.900327 16.942533
8 16.114195 17.222884
9 16.298539 17.444213

[23]: ax_10 = rog_base_10.df.plot(x='Time (ps)',
y=rog_base_10.df.columns[2:])

ax_10.set_ylabel('Radius of gyration (A)')

[23]: Text(0, 0.5, 'Radius of gyration (A)')
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Contributing to MDAnalysis

If you think that you will want to reuse your new analysis, or that others might find it helpful, please consider con-
tributing it to the MDAnalysis codebase. Making your code open-source can have many benefits; others may notice an
unexpected bug or suggest ways to optimise your code. If you write your analysis for a specific publication, please let
us know; we will ask those who use your code to cite your reference in published work.
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2.1.31 Parallelizing analysis

As we approach the exascale barrier, researchers are handling increasingly large volumes of molecular dynamics (MD)
data. Whilst MDAnalysis is a flexible and relatively fast framework for complex analysis tasks in MD simulations,
implementing a parallel computing framework would play a pivotal role in accelerating the time to solution for such
large datasets.

This document illustrates how you can run your own analysis scripts in parallel with MDAnalysis.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 2.0.0

Packages required:
• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisData

• dask (https://dask.org/)

• dask.distributed (https://distributed.dask.org/en/latest/)

• joblib (https://joblib.readthedocs.io/en/latest/)

[1]: import MDAnalysis as mda
from MDAnalysisData.adk_equilibrium import fetch_adk_equilibrium

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

(continues on next page)
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(continued from previous page)

n_jobs = 2

# You can also set `n_jobs` to the number of threads available:
# from multiprocessing import cpu_count
# n_jobs = cpu_count()

Background

In MDAnalysis, most implemented analysis methods are based on AnalysisBase, which provides a generic API
for users to write their own trajectory analysis. However, this framework only takes single-core power of the PC
by iterating through the trajectory and running a frame-wise analysis. Below we aim to first explore some possible
simple implementations of parallelism, including using multiprocessing and dask. We will also discuss the acceleration
approaches that should be considered, ranging from your own multiple-core laptops/desktops to distributed clusters. “

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosopho-transferase enzyme.
([BDPW09]). The trajectory has 4187 frames, which will take quite some time to run the analysis on with the conven-
tional serial (single-core) approach.

Note: downloading these datasets from MDAnalysisData may take some time.

[2]: adk = fetch_adk_equilibrium()

[3]: u = mda.Universe(adk.topology, adk.trajectory)
protein = u.select_atoms('protein')
print(f"Number of frames: {u.trajectory.n_frames}")
print(f"Number of atoms: {u.atoms.n_atoms}")

Number of frames: 4187
Number of atoms: 3341

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/
→˓DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by␣
→˓copying self.ts while other readers update self.ts inplace. This behavior will be␣
→˓changed in 3.0 to be the same as other readers. Read more at https://github.com/
→˓MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
warnings.warn("DCDReader currently makes independent timesteps"

Radius of gyration

For a detail description of this analysis, read Writing your own trajectory.

Here is a common form of single-frame method that we can normally see inside AnalysisBase. It may contain both
some dynamic parts that changes along time either implicitly or explicitly (e.g. AtomGroup) and some static parts (e.g.
a reference frame).

[4]: def radgyr(atomgroup, masses, total_mass=None):
# coordinates change for each frame
coordinates = atomgroup.positions

(continues on next page)
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(continued from previous page)

center_of_mass = atomgroup.center_of_mass()

# get squared distance from center
ri_sq = (coordinates-center_of_mass)**2
# sum the unweighted positions
sq = np.sum(ri_sq, axis=1)
sq_x = np.sum(ri_sq[:,[1,2]], axis=1) # sum over y and z
sq_y = np.sum(ri_sq[:,[0,2]], axis=1) # sum over x and z
sq_z = np.sum(ri_sq[:,[0,1]], axis=1) # sum over x and y

# make into array
sq_rs = np.array([sq, sq_x, sq_y, sq_z])

# weight positions
rog_sq = np.sum(masses*sq_rs, axis=1)/total_mass
# square root and return
return np.sqrt(rog_sq)

Serial Analysis

Below is the serial version of the analysis that we normally use.

[5]: result = []
for frame in u.trajectory:

result.append(radgyr(atomgroup=protein,
masses=protein.masses,
total_mass=np.sum(protein.masses)))

[6]: result = np.asarray(result).T

labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(result, labels):

plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[6]: Text(0.5, 0, 'Frame')
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Parallelization in a simple per-frame fashion

Frame-wise form of the function

The coordinates of the atomgroup analysed change with each frame of the trajectory. We need to explicitly
point the analysis function to the frame that needs to be analysed with a frame_index: atomgroup.universe.
trajectory[frame_index] in order to update the positions (and any other dynamic per-frame information) appro-
priately. Therefore, the first step to making the radgyr function parallelisable is to add a frame_index argument.

[7]: def radgyr_per_frame(frame_index, atomgroup, masses, total_mass=None):

# index the trajectory to set it to the frame_index frame
atomgroup.universe.trajectory[frame_index]

# coordinates change for each frame
coordinates = atomgroup.positions
center_of_mass = atomgroup.center_of_mass()

# get squared distance from center
ri_sq = (coordinates-center_of_mass)**2
# sum the unweighted positions
sq = np.sum(ri_sq, axis=1)
sq_x = np.sum(ri_sq[:,[1,2]], axis=1) # sum over y and z

(continues on next page)
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(continued from previous page)

sq_y = np.sum(ri_sq[:,[0,2]], axis=1) # sum over x and z
sq_z = np.sum(ri_sq[:,[0,1]], axis=1) # sum over x and y

# make into array
sq_rs = np.array([sq, sq_x, sq_y, sq_z])

# weight positions
rog_sq = np.sum(masses*sq_rs, axis=1)/total_mass
# square root and return
return np.sqrt(rog_sq)

Parallelization with multiprocessing

The native parallelisation module in Python is called multiprocessing. It contains useful tools to build a pool of working
cores, map the function into different workers, and gather and order the results from all the workers.

Below we use Pool from multiprocessing as a context manager. We can define how many cores (or workers) we
want to use with Pool(n_jobs).

[8]: import multiprocessing
from multiprocessing import Pool
from functools import partial

We use functools.partial to create a new method by supplying every argument needed for radgyr_per_frame
except frame_index. We can do this because the atomgroup, masses etc. will not change when we iterate the
function over each frame, but the frame_index will. We create a list of jobs where we use the worker_pool to map
each frame_index to each job.

[9]: run_per_frame = partial(radgyr_per_frame,
atomgroup=protein,
masses=protein.masses,
total_mass=np.sum(protein.masses))

frame_values = np.arange(u.trajectory.n_frames)

[10]: with Pool(n_jobs) as worker_pool:
result = worker_pool.map(run_per_frame, frame_values)

The result will be a list of arrays containing the result for each frame. Finally the results can be plotted along time.

[11]: result = np.asarray(result).T

labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(result, labels):

plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[11]: Text(0.5, 0, 'Frame')
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Parallelization with dask

Dask is a flexible library for parallel computing in Python. It provides advanced parallelism for analytics and has been
integrated or utilized in many scientific softwares. It can be scaled from one single computer to a cluster of computers
inside a HPC center.

Dask has a dynamic task scheduling system with synchronous (single-threaded), threaded, multiprocessing and dis-
tributed schedulers. The wrapping function in dask, dask.delayed, mimics for loops and wraps Python code into a
Dask graph. This code can then be easily run in parallel, and visualized with dask.visualize() to examine if the
task is well distributed. The code inside dask.delayed is not run immediately on execution, but pushed into a job
queue waiting for submission. You can read more on dask website.

Comaring to multiprocssing, the downside of multiprocessing is that it is mostly focused on single-machine
multicore parallelism (without extra manager). It is hard to operate on multimachine conditions. Below are two simple
examples to use Dask to achieve the same task as multiprocessing does.

The API of dask is similar to multiprocessing. It also creates a pool of workers for your single machine with the
given resources.

Note: The threaded scheduler in Dask (similar to threading in Python) should not be used as it will mess up with the
state (timestep) of the trajectory.

[12]: import dask
import dask.multiprocessing
dask.config.set(scheduler='processes')
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[12]: <dask.config.set at 0x7f8bf93611c0>

Below is how you can utilize dask.distributed module to build a local cluster.

Note: this is not really needed for your laptop/desktop. Using dask.distributed may even slow down the performance,
but it provides a diagnostic dashboard that can provide valuable insight on performance and progress.

See limitations here: https://distributed.dask.org/en/latest/limitations.html

[13]: from dask.distributed import Client

client = Client(n_workers=n_jobs)
client

[13]: <Client: 'tcp://127.0.0.1:35433' processes=2 threads=8, memory=33.18 GB>

First we have to create a list of jobs and transform them with dask.delayed() so they can be processed by Dask.

[14]: job_list = []
for frame_index in range(u.trajectory.n_frames):

job_list.append(dask.delayed(radgyr_per_frame(frame_index,
atomgroup=protein,
masses=protein.masses,
total_mass=np.sum(protein.masses))))

Then we simply use dask.compute() to get a list of ordered results.

[15]: result = dask.compute(job_list)

[16]: result = np.asarray(result).T

labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(result, labels):

plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[16]: Text(0.5, 0, 'Frame')
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We can also use the old radgyr function because dask is more flexible on the input arguments.

Note: the associated timestamp of protein will change during the trajectory iteration, so the processes are always
aware which timestep the trajectory is in and change the protein (e.g. its coordinates) accordingly.

[17]: job_list = []
for frame in u.trajectory:

job_list.append(dask.delayed(radgyr(atomgroup=protein,
masses=protein.masses,
total_mass=np.sum(protein.masses))))

Then we simply use dask.compute() to get a list of ordered results.

[18]: result = dask.compute(job_list)

[19]: result = np.asarray(result).T

labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(result, labels):

plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[19]: Text(0.5, 0, 'Frame')
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We can also use Dask dashboard (with dask.distributed.Client) to examine how jobs are distributed along all the work-
ers. Each green bar below represents one job, i.e. running radgyr on one frame of the trajectory. Be aware though,
that your Task Stream will probably look different.
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Parallelization in a split-apply-combine fashion

The aforementioned per-frame approach should normally be avoided because in each task, all the attributes
(AtomGroup, Universe, and etc) need to be pickled. This pickling may take even more time than your lightweight
analysis! Besides, in Dask, a significant amount of overhead time is needed to build a comprehensive Dask graph with
thousands of tasks.

Therefore, we should normally use a split-apply-combine scheme for parallel trajectory analysis. Here, the trajectory
is split into blocks, analysis is performed separately and in parallel on each block (“apply”), and then results from each
block are gathered and combined.
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Image from ([SFPG+19]) used under CC-BY license.

We will show a simple illustration of split-apply-combine approach with dask below:

Block analysis function

@dask.delayed is a common syntax to decorate a function into delayed-enabled. It is the same as delaying the function
by dask.delayed(analyze_block)(bs, radgyr, ...) later on.

[20]: @dask.delayed
def analyze_block(blockslice, func, *args, **kwargs):

result = []
for ts in u.trajectory[blockslice.start:blockslice.stop]:

A = func(*args, **kwargs)
result.append(A)

return result

Split the trajectory

This is a very simple way to split the trajectory. It splits the trajectory into defined n_blocks which is normally the
same as the number of cores you want to use.

Since it is achieved by evenly dividing the n_frames by n_blocks, and setting the last block to end at the last frame,
sometime it is not really balanced (e.g. the last block).

[21]: n_frames = u.trajectory.n_frames
n_blocks = n_jobs # it can be any realistic value (0 < n_blocks <= n_jobs)

n_frames_per_block = n_frames // n_blocks
blocks = [range(i * n_frames_per_block, (i + 1) * n_frames_per_block) for i in range(n_
→˓blocks-1)]
blocks.append(range((n_blocks - 1) * n_frames_per_block, n_frames))
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[22]: blocks

[22]: [range(0, 2093), range(2093, 4187)]

Apply the analysis per block

[23]: jobs = []
for bs in blocks:

jobs.append(analyze_block(bs,
radgyr,
protein,
protein.masses,
total_mass=np.sum(protein.masses)))

jobs = dask.delayed(jobs)

Using visualize() we can see that the trajectory is split into a few blocks instead of ~4000 jobs.

[24]: jobs.visualize()

[24]:

[25]: results = jobs.compute()

Combine the results

[26]: result = np.concatenate(results)

[27]: result = np.asarray(result).T

labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(result, labels):

(continues on next page)
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plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[27]: Text(0.5, 0, 'Frame')

If you look at the Dask dashboard (with dask.distributed.Client) this time, you will see each green bar below represents
a per-block analysis for radgyr.
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Other possible parallelism approaches for multiple analyses

You may want to perform multiple analyses (or analyze multiple trajectories). In this case, you can use some high-level
parallelism, i.e. running all the serial analyses in parallel.

Here we use joblib. It is implemented on multiprocessing and provides lightweight pipelining in Python. Compared
to multiprocessing, it has a simple API and convenient persistence of cached results.”

[28]: from joblib import Parallel, delayed
import multiprocessing
num_cores = multiprocessing.cpu_count()

Here we leverage the power of AnalysisFromFunction to fast construct a class that will iterate through the trajectory
and save the analysis results.

If you want to know more about how AnalysisFromFunctionworks, you can read it from Writing your own trajectory.

[29]: from MDAnalysis.analysis.base import AnalysisFromFunction

[30]: rog_1 = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

rog_2 = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

rog_3 = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

rog_4 = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

(continues on next page)
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(continued from previous page)

analysis_ensemble = [rog_1, rog_2, rog_3, rog_4]

run_analysis is a simple way to run the analysis and retrieve the results.

[31]: def run_analysis(analysis):
analysis.run()
return analysis.results

The joblib.delayed is different from dask.delayed; it cannot be used as a “pie” syntax (@joblib.delayed), so
you have to use it as below.

Similiar to dask.delayed, the code inside joblib.delayed will not run immediately but be pushed into a job
queue waiting for processing. In this case, run_anlaysis() is processed by Parallel with defined number of
workers–n_jobs.

[32]: results_ensemble = Parallel(n_jobs=num_cores)(delayed(run_analysis)(analysis)
for analysis in analysis_ensemble)

The results_ensemble will be a list of results that is returned from run_analysis. You can further split and
process each analysis.

[33]: result_1 = np.asarray(results_ensemble[0]['timeseries']).T

labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(result_1, labels):

plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame')

[33]: Text(0.5, 0, 'Frame')
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See Also

The parallel version of MDAnalysis is still under development. For existing solutions and some implementations of
parallel analysis, go to PMDA. PMDA ([SFPG+19]) applies the aforementioned split-apply-combine scheme with Dask.
In the future, it may provide a framework that consolidates all the parallelisation schemes described in this tutorial.”
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2.1.32 Standard residues in MDAnalysis selections

Proteins

The residue names listed here are accessible via the “protein” keyword in the Atom selection language.

The below names are drawn from the CHARMM 27, OPLS-AA, GROMOS 53A6, AMBER 03, and AMBER 99sb*-
ILDN force fields.

Protein backbone

Protein backbone atoms in MDAnalysis belong to a recognised protein residue and have the atom names:

Nucleic acids

The residue names listed here are accessible via the “nucleic” keyword in the Atom selection language.

The below names are drawn from largely from the CHARMM force field.

Nucleic backbone

Nucleic backbone atoms in MDAnalysis belong to a recognised nucleic acid residue and have the atom names:

Nucleobases

Nucleobase atoms from nucleic acid residues are recognised based on their names in CHARMM.

Nucleic sugars

Nucleic sugar atoms from nucleic acid residues are recognised by MDAnalysis if they have the atom names:

2.1.33 Advanced topology concepts

Adding a Residue or Segment to a Universe

To add a Residue or Segment to a topology, use the Universe.add_Residue or Universe.add_Segment methods.

>>> u = mda.Universe(PSF, DCD)
>>> u.segments
<SegmentGroup with 1 segment>
>>> u.segments.segids
array(['4AKE'], dtype=object)
>>> newseg = u.add_Segment(segid='X')
>>> u.segments.segids
array(['4AKE', 'X'], dtype=object)

(continues on next page)
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>>> newseg.atoms
<AtomGroup with 0 atoms>

To assign the last 100 residues from the Universe to this new Segment:

>>> u.residues[-100:].segments = newseg
>>> newseg.atoms
<AtomGroup with 1600 atoms>

Another example is creating custom segments for protein domains.

Molecules

In MDAnalysis, a molecule is a GROMACS-only concept that is relevant in some analysis methods. A group of atoms
is considered a “molecule” if it is defined by the [ moleculetype ] section in a GROMACS topology. Molecules
are only defined if a Universe is created from a GROMACS topology file (i.e. with a .tpr extension). Unlike fragments,
they are not accessible directly from atoms.

>>> tpr = mda.Universe(TPR)
>>> tpr.atoms.molecules
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "MDAnalysis/core/groups.py", line 2278, in __getattr__

cls=self.__class__.__name__, attr=attr))
AttributeError: AtomGroup has no attribute molecules

However, the order (molnum) and name (moltype) of each molecule is accessible as topology attributes:

>>> tpr.atoms.molnums
array([ 0, 0, 0, ..., 11086, 11087, 11088])
>>> tpr.atoms.moltypes
array(['AKeco', 'AKeco', 'AKeco', ..., 'NA+', 'NA+', 'NA+'], dtype=object)

Adding custom TopologyAttrs

2.1.34 Example data

MDAnalysis offers a collection of example data files and datasets to run tests and tutorials. These are split into two
packages:

• MDAnalysisTests: primarily for unit tests of the code

• MDAnalysisData: datasets for workshops and tutorials
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MDAnalysisTests

While this is installed as a separate package, you should import files like so:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD

u = mda.Universe(PSF, DCD)

A complete list of files and descriptions is in the mdanalysis/testsuite/MDAnalysisTests/datafiles.py file.
The actual files are stored in the mdanalysis/testsuite/MDAnalysisTests/data/ directory.

MDAnalysisData

The MDAnalysisData package is an interface to download, cache, and access certain datasets hosted on external repos-
itories (e.g. figshare, zenodo, DataDryad). Data is not downloaded upon installation, so the package itself is small; but
the directory where the datasets are cached can grow significantly.

You can access datasets like so:

import MDAnalysis as mda
from MDAnalysisData import datasets
adk = datasets.fetch_adk_equilibrium()
u = mda.Universe(adk.topology, adk.trajectory)

# to see the description of the dataset
print(adk.DESCR)

The cached files are stored by default in the ~/MDAnalysis_data directory. This can be changed by setting the
environment variable MDANALYSIS_DATA. You can change this for a Terminal session with the below command:

export MDANALYSIS_DATA=/my/chosen/path/MDAnalysis_data

Add it to your .bashrc for a permanent change.

echo 'export MDANALYSIS_DATA=/my/chosen/path/MDAnalysis_data' >> ~/.bashrc

In Python, you can check the location of your caching directory:

MDAnalysisData.base.get_data_home()

And clear the directory with:

MDAnalysisData.base.clear_data_home()

A list of datasets can be found at the MDAnalysisData documentation.
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2.1.35 Contributing to MDAnalysis

MDAnalysis is a free and open source project. It evolves and grows with the demands of its user base. The development
team very much welcomes contributions from its users. Contributions can take many forms, such as:

• bug reports or enhancement requests filed through the Issue Tracker

• bug fixes
• improvements to the code (speed, clarity, modernised code)

• new features in the code

• improvements and additions to documentation (including typo fixes)

• improvements to the build systems
• questions or discussions on `GitHub Discussions`_

The MDAnalysis community subscribes to a Code of Conduct that all community members agree and adhere to —
please read it.

Important: The MDAnalysis and MDAnalysisTests packages are distributed under the GNU General Public License,
version 2 (or any later version). This is a copyleft license: not only is MDAnalysis open-source, but all derivative work
must be as well. Any code, documentation, or files that you contribute to MDAnalysis will also be made available
under this license. Be sure that you are comfortable with that before you push additions to GitHub.

Parts of this page came from the Contributing to pandas guide.

Where to start?

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

If you are new to Git and version control, have a look at Version control, Git, and GitHub.

If you are looking to contribute a code or documentation fix, or core feature to MDAnalysis, and you are brand new
to MDAnalysis or open-source development – we recommend going through the guides for contributing to the main
codebase or the user guide.

If you are looking to contribute your own project or new addition to MDAnalysis, we encourage you to open an issue
at the Issue Tracker or consider creating an MDAnalysis toolkit (MDAKit) . MDAKits are standalone packages that
build on MDAnalysis to enhance its functionality. or solve specific scientific or technical problems. MDAKits can be
optionally registered at the MDAKits registry to advertise to the broader MDAnalysis community. All packages on the
registry are continuously tested against the latest and development versions of MDAnalysis.

For more on creating an MDAKit, please see the documentation on Making an MDAKit.

Version control, Git, and GitHub

Git is a version control system that allows many people to work together on a project. Working with Git can be one of
the more daunting aspects of contributing to MDAnalysis. Sticking to the guidelines below will help keep the process
straightforward and mostly trouble free. As always, if you are having difficulties please feel free to ask for help.

The code is hosted on GitHub. To contribute you will need to sign up for a free GitHub account.

Some great resources for learning Git:

• the GitHub help pages.
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• the NumPy’s documentation.

• Matthew Brett’s Pydagogue.

Getting started with Git

GitHub has instructions for installing git, setting up your SSH key, and configuring git. All these steps need to be
completed before you can work seamlessly between your local repository and GitHub.

2.1.36 Contributing to the main codebase

If you would like to contribute, start by searching through the issues and pull requests to see whether someone else has
raised a similar idea or question.

If you don’t see your idea or problem listed, do one of the following:

• If your contribution is minor, such as a typo fix, go ahead and fix it by following the guide below and open a
pull request.

• If your contribution is major, such as a bug fix or a new feature, start by opening an issue first. That way, other
people can weigh in on the discussion before you do any work. If you also create a pull request, you should link
it to the issue by including the issue number in the pull request’s description.

Here is an overview of the development workflow for code or inline code documentation, as expanded on throughout
the rest of the page.

1. Fork the MDAnalysis repository from the mdanalysis account into your own account

2. Set up an isolated virtual environment for code development

3. Build development versions of MDAnalysis and MDAnalysisTests on your computer into the virtual environment

4. Create a new branch off the develop branch

5. Add your new feature or bug fix or add your new documentation

6. Add and run tests (if adding to the code)

7. Build and view the documentation (if adding to the docs)

8. Ensure PEP8 compliance (mandatory) and format your code with Darker (optional)

9. Commit and push your changes, and open a pull request.

Working with the code

Forking

You will need your own fork to work on the code. Go to the MDAnalysis project page and hit the Fork button. You
will want to clone your fork to your machine:

git clone https://github.com/your-user-name/mdanalysis.git
cd mdanalysis
git remote add upstream https://github.com/MDAnalysis/mdanalysis

This creates the directory mdanalysis and connects your repository to the upstream (main project) MDAnalysis repos-
itory.
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Creating a development environment

To change code and test changes, you’ll need to build both MDAnalysis and MDAnalysisTests from source. This
requires a Python environment. We highly recommend that you use virtual environments. This allows you to have
multiple experimental development versions of MDAnalysis that do not interfere with each other, or your own sta-
ble version. Since MDAnalysis is split into the actual package and a test suite, you need to install both modules in
development mode.

You can do this either with conda or pip.

Note: If you are a first time contributor and/or don’t have a lot of experience managing your own Python virtual
environments, we strongly suggest using conda. You only need to follow the sections corresponding to the installation
method you choose.

With conda

Install either Anaconda or miniconda. Make sure your conda is up to date:

conda update conda

Create a new environment with conda create. This will allow you to change code in an isolated environment without
touching your base Python installation, and without touching existing environments that may have stable versions of
MDAnalysis. :

conda create --name mdanalysis-dev "python>=3.9"

Use a recent version of Python that is supported by MDAnalysis for this environment.

Activate the environment to build MDAnalysis into it:

conda activate mdanalysis-dev

Warning: Make sure the mdanalysis-dev environment is active when developing MDAnalysis.

To view your environments:

conda info -e

To list the packages installed in your current environment:

conda list

Note: When you finish developing MDAnalysis you can deactivate the environment with conda deactivate, in
order to return to your root environment.

See the full conda documentation for more details.
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With pip and virtualenv

Like conda, virtual environments managed with virtualenv allow you to use different versions of Python and Python
packages for your different project. Unlike conda, virtualenv is not a general-purpose package manager. Instead, it
leverages what is available on your system, and lets you install Python packages using pip.

To use virtual environments you have to install the virtualenv package first. This can be done with pip:

python -m pip install virtualenv

Virtual environments can be created for each project directory.

cd my-project/
virtualenv my-project-env

This will create a new folder my-project-env. This folder contains the virtual environment and all packages you
have installed in it. To activate it in the current terminal run:

source myproject-env/bin/activate

Now you can install packages via pip without affecting your global environment. The packages that you install when
the environment is activated will be available in terminal sessions that have the environment activated.

Note: When you finish developing MDAnalysis you can deactivate the environment with deactivate, in order to
return to your root environment.

The virtualenvwrapper package makes virtual environments easier to use. It provides some very useful features:

• it organises the virtual environment into a single user-defined directory, so they are not scattered throughout the
file system;

• it defines commands for the easy creation, deletion, and copying of virtual environments;

• it defines a command to activate a virtual environment using its name;

• all commands defined by virtualenvwrapper have tab-completion for virtual environment names.

You first need to install virtualenvwrapper outside of a virtual environment:

python -m pip install virtualenvwrapper

Then, you need to load it into your terminal session. Add the following lines in ~/.bashrc. They will be executed
every time you open a new terminal session:

# Decide where to store the virtual environments
export WORKON_HOME=~/Envs
# Make sure the directory exists
mkdir -p ${WORKON_HOME}
# Load virtualenvwrapper
source /usr/local/bin/virtualenvwrapper.sh

Open a new terminal or run source ~/.bashrc to update your session. You can now create a virtual environment
with:

mkvirtualenv my-project
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Regardless of your current working directory, the environment is created in ~/Envs/ and it is now loaded in our terminal
session.

You can load your virtual environments by running workon my-project, and exit them by running deactivate.

Virtual environments, especially with virtualenvwrapper, can do much more. For example, you can create virtual
environments with different python interpreters with the -p flag. The Hitchhiker’s Guide to Python has a good tutorial
that gives a more in-depth explanation of virtual environments. The virtualenvwrapper documentation is also a good
resource to read.

On a Mac

One more step is often required on macOS, because of the default number of files that a process can open simultaneously
is quite low (256). To increase the number of files that can be accessed, run the following command:

ulimit -n 4096

This sets the number of files to 4096. However, this command only applies to your currently open terminal session. To
keep this high limit, add the above line to your ~/.profile.

Building MDAnalysis

With conda

Note: Make sure that you have cloned the repository and activated your virtual environment with conda activate
mdanalysis-dev.

First we need to install dependencies. You’ll need a mix of conda and pip installations:

conda install -c conda-forge \
'Cython>=0.28' \
'numpy>=1.21.0' \
'biopython>=1.80' \
'networkx>=2.0' \
'GridDataFormats>=0.4.0' \
'mmtf-python>=1.0.0' \
'joblib>=0.12' \
'scipy>=1.5.0' \
'matplotlib>=1.5.1' \
'tqdm>=4.43.0' \
'threadpoolctl'\
'packaging' \
'fasteners' \
'netCDF4>=1.0' \
'h5py>=2.10' \
'chemfiles>=0.10' \
'pyedr>=0.7.0' \
'pytng>=0.2.3' \
'gsd>3.0.0' \
'rdkit>=2020.03.1' \
'parmed' \

(continues on next page)
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(continued from previous page)

'seaborn' \
'scikit-learn' \
'tidynamics>=1.0.0' \
'mda-xdrlib'

# documentation dependencies
conda install -c conda-forge 'mdanalysis-sphinx-theme>=1.3.0' docutils sphinx-
→˓sitemap sphinxcontrib-bibtex pybtex pybtex-docutils
python -m pip install docutils sphinx-sitemap sphinxcontrib-bibtex pybtex␣
→˓pybtex-docutils

Ensure that you have a working C/C++ compiler (e.g. gcc or clang). You will also need Python 3.9. We will now
install MDAnalysis.

# go to the mdanalysis source directory
cd mdanalysis/

# Build and install the MDAnalysis package
cd package/
python -m pip install -e .

# Build and install the test suite
cd ../testsuite/
python -m pip install -e .

At this point you should be able to import MDAnalysis from your locally built version. If you are running the develop-
ment version, this is visible from the version number ending in -dev0. For example:

$ python # start an interpreter
>>> import MDAnalysis as mda
>>> mda.__version__
'2.6.0-dev0'

With pip and virtualenv

Note: Make sure that you have cloned the repository and activated your virtual environment with source
myproject-env/bin/activate (or workon my-project if you used the virtualenvwrapper package)

Install the dependencies:

python -m pip install \
'Cython>=0.28' \
'numpy>=1.21.0' \
'biopython>=1.80' \
'networkx>=2.0' \
'GridDataFormats>=0.4.0' \
'mmtf-python>=1.0.0' \
'joblib>=0.12' \
'scipy>=1.5.0' \
'matplotlib>=1.5.1' \

(continues on next page)

2.1. Communications 357

https://virtualenvwrapper.readthedocs.io/en/latest/


MDAnalysis User Guide

(continued from previous page)

'tqdm>=4.43.0' \
'threadpoolctl'\
'packaging' \
'fasteners' \
'netCDF4>=1.0' \
'h5py>=2.10' \
'chemfiles>=0.10' \
'pyedr>=0.7.0' \
'pytng>=0.2.3' \
'gsd>3.0.0' \
'rdkit>=2020.03.1' \
'parmed' \
'seaborn' \
'scikit-learn' \
'tidynamics>=1.0.0' \
'mda-xdrlib'

# for building documentation
python -m pip install \
sphinx 'mdanalysis-sphinx-theme>=1.3.0' sphinx-sitemap \
pybtex docutils pybtex-docutils sphinxcontrib-bibtex

Some packages, such as clustalw, are not available via pip.

Ensure that you have a working C/C++ compiler (e.g. gcc or clang). You will also need Python 3.9. We will now
install MDAnalysis.

# go to the mdanalysis source directory
cd mdanalysis/

# Build and install the MDAnalysis package
cd package/
python -m pip install -e .

# Build and install the test suite
cd ../testsuite/
python -m pip install -e .

At this point you should be able to import MDAnalysis from your locally built version. If you are running the develop-
ment version, this is visible from the version number ending in “-dev0”. For example:

$ python # start an interpreter
>>> import MDAnalysis as mda
>>> mda.__version__
'2.7.0-dev0'
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Branches in MDAnalysis

The most important branch of MDAnalysis is the develop branch, to which all development code for the next release
is pushed.

The develop branch can be considered an “integration” branch for including your code into the next release. Only work-
ing, tested code should be committed to this branch. All code contributions (“features”) should branch off develop.
At each release, a snapshot of the develop branch is taken, packaged and uploaded to PyPi and conda-forge.

Creating a branch

The develop branch should only contain approved, tested code, so create a feature branch for making your changes. For
example, to create a branch called shiny-new-feature from develop:

git checkout -b shiny-new-feature develop

This changes your working directory to the shiny-new-feature branch. Keep any changes in this branch specific to
one bug or feature so it is clear what the branch brings to MDAnalysis. You can have many branches with different
names and switch in between them using the git checkout my-branch-name command.

There are several special branch names that you should not use for your feature branches:

• master

• develop

• package-*

• gh-pages

package branches are used to prepare a new production release and should be handled by the release manager only.

master is the old stable code branch and is kept protected for historical reasons.

gh-pages is where built documentation to be uploaded to github pages is held.

Writing new code

Code formatting in Python

MDAnalysis is a project with a long history and many contributors; it hasn’t used a consistent coding style. Since
version 0.11.0, we are trying to update all the code to conform with PEP8. Our strategy is to update the style every
time we touch an old function and thus switch to PEP8 continuously.

Important requirements (from PEP8):
• keep line length to 79 characters or less; break long lines sensibly

• indent with spaces and use 4 spaces per level
• naming:

– classes: CapitalClasses (i.e. capitalized nouns without spaces)

– methods and functions: underscore_methods (lower case, with underscores for spaces)

We recommend that you use a Python Integrated Development Environment (IDE) (PyCharm and others) or external
tools like flake8 for code linting. For integration of external tools with emacs and vim, check out elpy (emacs) and
python-mode (vim).
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To apply the code formatting in an automated way, you can also use code formatters. External tools include autopep8
and yapf. Most IDEs either have their own code formatter or will work with one of the above through plugins.

Modules and dependencies

MDAnalysis strives to keep dependencies small and lightweight. Code outside the MDAnalysis.analysis and
MDAnalysis.visualization modules should only rely on the core dependencies, which are always installed. Anal-
ysis and visualization modules can use any any package, but the package is treated as optional.

Imports in the code should follow the General rules for importing.

See also:
See Module imports in MDAnalysis for more information.

Developing in Cython

The setup.py script first looks for the .c files included in the standard MDAnalysis distribution. These are not in the
GitHub repository, so setup.py will use Cython to compile extensions. .pyx source files are used instead of .c files.
From there, .pyx files are converted to .c files if they are newer than the already present .c files or if the --force flag is
set (i.e. python setup.py build --force). End users (or developers) should not trigger the .pyx to .c conversion,
since .c files delivered with source packages are always up-to-date. However, developers who work on the .pyx files
will automatically trigger the conversion since .c files will then be outdated.

Place all source files for compiled shared object files into the same directory as the final shared object file.

.pyx files and cython-generated .c files should be in the same directory as the .so files. External dependent
C/C++/Fortran libraries should be in dedicated src/ and include/ folders. See the following tree as an example:

MDAnalysis
|--lib
| |-- _distances.so
| |-- distances.pyx
| |-- distances.c
|-- coordinates

|-- _dcdmodule.so
|-- src

|-- dcd.c
|-- include

|-- dcd.h

Testing your code

MDAnalysis takes testing seriously. All code added to MDAnalysis should have tests to ensure that it works as expected;
we aim for 90% coverage. See Tests in MDAnalysis for more on writing, running, and interpreting tests.
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Documenting your code

Changes to the code should be reflected in the ongoing CHANGELOG. Add an entry here to document your fix, enhance-
ment, or change. In addition, add your name to the author list. If you are addressing an issue, make sure to include the
issue number.

Ensure PEP8 compliance (mandatory) and format your code with Darker (optional)

Darker is a partial formatting tool that helps to reformat new or modified code lines so the codebase progressively
adapts a code style instead of doing a full reformat, which would be a big commitment. It was designed with the black
formatter in mind, hence the name.

In MDAnalysis we only require PEP8 compliance, so if you want to make sure that your PR passes the darker bot,
you’ll need both darker and flake8:

pip install darker flake8

You’ll also need the original codebase so darker can first get a diff between the current develop branch and your code.
After making your changes to your local copy of the MDAnalysis repo, add the remote repo (here we’re naming it
upstream), and fetch the content:

git remote add upstream https://github.com/MDAnalysis/mdanalysis.git
git fetch upstream

Now you can check your modifications on the package:

darker --diff -r upstream/develop package/MDAnalysis -L flake8

and the test suite:

darker --diff -r upstream/develop testsuite/MDAnalysisTests -L flake8

Darker will first suggest changes so that the new code lines comply with black’s rules, like this:

and then show flake8 errors and warnings. These look like this:
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You are free to skip the diffs and then manually fix the PEP8 faults. Or if you’re ok with the suggested formatting
changes, just apply the suggested fixes:

darker -r upstream/develop package/MDAnalysis -L flake8
darker -r upstream/develop testsuite/MDAnalysisTests -L flake8

Adding your code to MDAnalysis

Committing your code

When you are happy with a set of changes and all the tests pass, it is time to commit. All changes in one revision
should have a common theme. If you implemented two rather different things (say, one bug fix and one new feature),
then split them into two commits with different messages.

Once you’ve made changes to files in your local repository, you can see them by typing:

git status

Tell git to track files by typing:

git add path/to/file-to-be-added.py

Doing git status again should give something like:

# On branch shiny-new-feature
#
# modified: /relative/path/to/file-you-added.py
#

Then commit with:

git commit -m

This opens up a message editor.

Always add a descriptive comment for your commit message (feel free to be verbose!):

• use a short (<50 characters) subject line that summarizes the change

• leave a blank line

• optionally, add additional more verbose descriptions; paragraphs or bullet lists (with - or *) are good

• manually break lines at 80 characters

• manually indent bullet lists

See also:
See Tim Pope’s A Note About Git Commit Messages for a rationale for these rules.
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Pushing your code to GitHub

When you want your changes to appear publicly on your GitHub page, push your forked feature branch’s commits:

git push origin shiny-new-feature

Here origin is the default name given to your remote repository on GitHub. You can see the remote repositories:

git remote -v

If you added the upstream repository as described above you will see something like:

origin git@github.com:your-username/mdanalysis.git (fetch)
origin git@github.com:your-username/mdanalysis.git (push)
upstream git@github.com:MDAnalysis/mdanalysis.git (fetch)
upstream git@github.com:MDAnalysis/mdanalysis.git (push)

Now your code is on GitHub, but it is not yet a part of the MDAnalysis project. For that to happen, a pull request needs
to be submitted on GitHub.

Rebasing your code

Often the upstream MDAnalysis develop branch will be updated while you are working on your own code. You will
then need to update your own branch with the new code to avoid merge conflicts. You need to first retrieve it and then
rebase your branch so that your changes apply to the new code:

git fetch upstream
git rebase upstream/develop

This will replay your commits on top of the latest development code from MDAnalysis. If this leads to merge conflicts,
you must resolve these before submitting your pull request. If you have uncommitted changes, you will need to git
stash them prior to updating. This will effectively store your changes and they can be reapplied after updating with
git stash apply.

Once rebased, push your changes:

git push -f origin shiny-new-feature

and create a pull request.

Creating a pull request

The typical approach to adding your code to MDAnalysis is to make a pull request on GitHub. Please make sure that
your contribution passes all tests. If there are test failures, you will need to address them before we can review your
contribution and eventually merge them. If you have problems with making the tests pass, please ask for help! (You
can do this in the comments of the pull request).

1. Navigate to your repository on GitHub

2. Click on the Pull Request button

3. You can then click on Commits and Files Changed to make sure everything looks okay one last time

4. Write a description of your changes and follow the PR checklist

• check that docs are updated
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• check that tests run

• check that you’ve updated CHANGELOG

• reference the issue that you address, if any

5. Click Send Pull Request.

Your pull request is then sent to the repository maintainers. After this, the following happens:

1. A suite of tests are run on your code with the tools travis, appveyor and Codecov. If they fail, please fix your pull
request by pushing updates to it.

2. Developers will ask questions and comment in the pull request. You may be asked to make changes.

3. When everything looks good, a core developer will merge your code into the develop branch of MDAnalysis.
Your code will be in the next release.

If you need to make changes to your code, you can do so on your local repository as you did before. Committing and
pushing the changes will update your pull request and restart the automated tests.

Working with the code documentation

MDAnalysis maintains two kinds of documentation:

1. This user guide: a map of how MDAnalysis works, combined with tutorial-like overviews of specific topics (such
as the analyses)

2. The documentation generated from the code itself. Largely built from code docstrings, these are meant to provide
a clear explanation of the usage of individual classes and functions. They often include technical or historical
information such as in which version the function was added, or deprecation notices.

This guide is for the documentation generated from the code. If you are looking to contribute to the user guide, please
see Contributing to the user guide.

MDAnalysis has a lot of documentation in the Python doc strings. The docstrings follow the Numpy Docstring Standard,
which is used widely in the Scientific Python community. They are nice to read as normal text and are converted by
sphinx to normal ReST through napoleon.

This standard specifies the format of the different sections of the docstring. See this document for a detailed explanation,
or look at some of the existing functions to extend it in a similar manner.

Note that each page of the online documentation has a link to the Source of the page. You can look at it in order to find
out how a particular page has been written in reST and copy the approach for your own documentation.

Building the documentation

The online documentation is generated from the pages in mdanalysis/package/doc/sphinx/source/
documentation_pages. The documentation for the current release are hosted at www.mdanalysis.org/docs, while
the development version is at www.mdanalysis.org/mdanalysis/.

In order to build the documentation, you must first clone the main MDAnalysis repo. Set up a virtual environment in
the same way as you would for the code (you should typically use the same environment as you do for the code). Build
the development version of MDAnalysis.

Then, generate the docs with:

cd doc/sphinx && make html

This generates and updates the files in doc/html. If the above command fails with an ImportError, run
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python setup.py build_ext --inplace

and retry.

You will then be able to open the home page, doc/html/index.html, and look through the docs. In particular, have
a look at any pages that you tinkered with. It is typical to go through multiple cycles of fix, rebuild the docs, check and
fix again.

If rebuilding the documentation becomes tedious after a while, install the sphinx-autobuild extension.

Where to write docstrings

When writing Python code, you should always add a docstring to each public (visible to users):

• module

• function

• class

• method

When you add a new module, you should include a docstring with a short sentence describing what the module does,
and/or a long document including examples and references.

Guidelines for writing docstrings

A typical function docstring looks like the following:

def func(arg1, arg2):
"""Summary line.

Extended description of function.

Parameters
----------
arg1 : int

Description of `arg1`
arg2 : str

Description of `arg2`

Returns
-------
bool

Description of return value

"""
return True

See also:
The napoleon documentation has further breakdowns of docstrings at the module, function, class, method, variable,
and other levels.

2.1. Communications 365

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html


MDAnalysis User Guide

• When writing reST markup, make sure that there are at least two blank lines above the reST after a numpy
heading. Otherwise, the Sphinx/napoleon parser does not render correctly.

some more docs bla bla

Notes
-----
THE NEXT TWO BLANK LINES ARE IMPORTANT.

.. versionadded:: 0.16.0

• Do not use “Example” or “Examples” as a normal section heading (e.g. in module level docs): only use it as a
NumPy doc Section. It will not be rendered properly, and will mess up sectioning.

• When writing multiple common names in one line, Sphinx sometimes tries to reference the first name. In that
case, you have to split the names across multiple lines. See below for an example:

Parameters
----------
n_atoms, n_residues : int

numbers of atoms/residues

• We are using MathJax with sphinx so you can write LaTeX code in math tags.

In blocks, the code below

#<SPACE if there is text above equation>
.. math::

e^{i\pi} = -1

renders like so:

𝑒𝑖𝜋 = −1

Math directives can also be used inline.

We make use of the identity :math:`e^{i\pi} = -1` to show...

Note that you should always make doc strings with math code raw python strings by prefixing them
with the letter “r”, or else you will get problems with backslashes in unexpected places.

def rotate(self, R):
r"""Apply a rotation matrix *R* to the selection's coordinates.

:math:`\mathsf{R}` is a 3x3 orthogonal matrix that transforms a␣
→˓vector
:math:`\mathbf{x} \rightarrow \mathbf{x}'`:

.. math::

\mathbf{x}' = \mathsf{R}\mathbf{x}
"""
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See also:
See Stackoverflow: Mathjax expression in sphinx python not rendering correctly for further discus-
sion.

Documenting changes

We use reST constructs to annotate additions, changes, and deprecations to the code so that users can quickly learn
from the documentation in which version of MDAnalysis the feature is available.

A newly added module/class/method/attribute/function gets a versionadded directive entry in its primary doc sec-
tion, as below.

.. versionadded:: X.Y.Z

For parameters and attributes, we typically mention the new entity in a versionchanged section of the function or class
(although a versionadded would also be acceptable).

Changes are indicated with a versionchanged directive

.. versionchanged:: X.Y.Z
Description of the change. Can contain multiple descriptions.
Don't assume that you get nice line breaks or formatting, write your text in
full sentences that can be read as a paragraph.

Deprecations (features that are not any longer recommended for use and that will be removed in future releases) are
indicated by the deprecated directive:

.. deprecated:: X.Y.Z
Describe (1) alternatives (what should users rather use) and
(2) in which future release the feature will be removed.

When a feature is removed, we remove the deprecation notice and add a versionchanged to the docs of the enclosing
scope. For example, when a parameter of a function is removed, we update the docs of the function. Function/class
removal are indicated in the module docs. When we remove a whole module, we typically indicate it in the top-level
reST docs that contain the TOC tree that originally included the module.

Writing docs for abstract base classes

MDAnalysis contains a number of abstract base classes, such as AnalysisBase. Developers who define new base
classes, or modify existing ones, should follow these rules:

• The class docstring needs to contain a list of methods that can be overwritten by inheritance from the base class.
Distinguish and document methods as required or optional.

• The class docstring should contain a minimal example for how to derive this class. This demonstrates best
practices, documents ideas and intentions behind the specific choices in the API, helps to promote a unified code
base, and is useful for developers as a concise summary of the API.

• A more detailed description of methods should come in the method docstring, with a note specifying if the
method is required or optional to overwrite.

See the documentation of MDAnalysis.analysis.base.AnalysisBase for an example of this documentation.
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Adding your documentation to MDAnalysis

As with any contribution to an MDAnalysis repository, commit and push your documentation contributions to GitHub.
If any fixes in the restructured text are needed, put them in their own commit (and do not include any generated files
under docs/html). Try to keep all reST fixes in the one commit. git add FILE and git commit --amend is your
friend when piling more and more small reST fixes onto a single “fixed reST” commit.

We recommend building the docs locally first to preview your changes. Then, create a pull request. All the tests in the
MDAnalysis test suite will run, but only one checks that the documents compile correctly.

Viewing the documentation interactively

In the Python interpreter one can simply say:

import MDAnalysis
help(MDAnalysis)
help(MDAnalysis.Universe)

In ipython one can use the question mark operator:

In [1]: MDAnalysis.Universe?

2.1.37 Contributing to the user guide

MDAnalysis maintains two kinds of documentation:

1. This user guide: a map of how MDAnalysis works, combined with tutorial-like overviews of specific topics (such
as the analyses)

2. The documentation generated from the code itself. Largely built from code docstrings, these are meant to provide
a clear explanation of the usage of individual classes and functions. They often include technical or historical
information such as in which version the function was added, or deprecation notices.

This guide is about how to contribute to the user guide. If you are looking to add to documentation of the main code
base, please see Working with the code documentation.

The user guide makes use of a number of Sphinx extensions to ensure that the code examples are always up-to-date.
These include nbsphinx and the ipython directive.

The ipython directive lets you put code in the documentation which will be run during the doc build. For example:

.. ipython:: python

x = 2
x**3

will be rendered as:

In [1]: x = 2

In [2]: x**3
Out[2]: 8

Many code examples in the docs are run during the doc build. This approach means that code examples will always be
up to date, but it does make the doc building a bit more complex.
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Here is an overview of the development workflow for the user guide, as expanded on throughout the rest of the page.

1. Fork the MDAnalysis repository from the mdanalysis account into your own account

2. Set up an isolated virtual environment for your documentation

3. Create a new branch off the develop branch

4. Add your new documentation.

5. Build and view the documentation.

6. Test your notebook cells, if applicable.

7. Commit and push your changes, and open a pull request.

Forking and cloning the User Guide

Go to the MDAnalysis project page and hit the Fork button. You will want to clone your fork to your machine:

git clone https://github.com/your-user-name/UserGuide.git
cd UserGuide
git remote add upstream https://github.com/MDAnalysis/UserGuide

This creates the directory UserGuide and connects your repository to the upstream (main project) MDAnalysis repos-
itory.

Creating a development environment

Create a new virtual environment for the user guide. Install the required dependencies, and activate the nglview
extension. We use nglview for visualizing molecules in Jupyter notebook tutorials.

Using conda or similar (miniconda, mamba, micromamba), create a new environment with all the dependencies:

cd UserGuide/
conda env create --file environment.yml --quiet
conda activate mda-user-guide
jupyter-nbextension enable nglview --py --sys-prefix

Building the user guide

Navigate to the doc/ directory and run make html:

cd doc/
make html

The HTML output will be in doc/build/, which you can open in your browser of choice. The homepage is doc/
build/index.html.

If rebuilding the documentation becomes tedious after a while, install the sphinx-autobuild extension.
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Saving state in Jupyter notebooks

One of the neat things about nglview is the ability to interact with molecules via the viewer. This ability can be
preserved for the HTML pages generated from Jupyer notebooks by nbsphinx, if you save the notebook widget state
after execution.

Test with pytest and nbval

Whenever you add or modify notebook cells, you should make sure they run without errors and that their outputs are
consistent, since they are part of the documentation as well.

We use a pytest plugin for this called nbval, it takes advantage of the saved notebook state and re-runs the notebook to
determine if its output is still identical to the saved state. Thus, cells not only have to work (no errors), but also must
give the same output they gave when they were saved.

To test all notebooks, just cd into UserGuide/tests and run pytest. If you want to test a particular notebook, check
the the contents of pytest.ini, this file defines flags that you can also pass directly to pytest. For example, if you wanted
to test the hole2 notebook:

pytest --nbval --nbval-current-env --nbval-sanitize-with ./sanitize_output.cfg ../doc/
→˓source/examples/analysis/polymers_and_membranes/hole2.ipynb

Where --nbval tells pytest to use nbval to test Jupyter notebooks, --nbval-current-env to use the currently loaded
python environment (make sure you actually loaded your environment) instead of trying to use the one that was used
when the notebook was saved and --nbval-sanitize-with to point pytest to a file full of replacement rules like this
one for example:

regex: (.*B \[0.*B/s\])
replace: DOWNLOAD

This tells pytest to scan the outputs of all cells and replace the matching string with the word DOWNLOAD. This is
called sanitization.

Sanitization

Exactly matching cell outputs between runs is a high bar for testing and tends to give false errors – otherwise correct
cells may give different outputs each time they are run (e.g. cells with code that outputs memory locations). To alleviate
this, before testing each cell pytest will match its output against the regular expressions from sanitize_output.cfg.
This file contains replacements for strings that we know will vary. Pytest will replace the dynamic output with these
constant strings, which won’t change between runs and hence prevent spurious failures.

If your code correctly outputs variable strings each time its run, you should add a replacement rule to the
sanitize_output.cfg file and try to make it as specific as possible.
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On the hole2 notebook

The hole2 notebook is special in that it requires installation of extra software to run, namely the hole2 program. If you
test all the notebooks you may therefore run into errors if hole2 is not installed. These errors can be generally ignored
unless you do specifically want to test the hole2 notebook. Of course, you should take note of other errors that occur
if hole2 is installed! To run the hole2 notebook you’ll have to download hole2, compile it, and make sure your system
can find the hole2 executable. In UNIX-based systems this implies adding its path to the $PATH environmental variable
like this:

export PATH=$PATH:"<PATH_TO_HOLE2>/exe"

Adding changes to the UserGuide

As with the code, commit and push your code to GitHub. Then create a pull request. The only test run for the User
Guide is: that your file compile into HTML documents without errors. As usual, a developer will review your PR and
merge the code into the User Guide when it looks good.

It is often difficult to review Jupyter notebooks on GitHub, especially if you embed widgets and images. One way to
make it easier on the developers who review your changes is to build the changes on your forked repository and link
the relevant sections in your pull request. To do this, create a gh-pages branch and merge your new branch into it.

# the first time
git checkout -b gh-pages
git merge origin/my-new-branch

Fix any merge conflicts that arise. Then edit UserGuide/doc/source/conf.py and change the URL of the site,
which is set to site_url = "https://www.mdanalysis.org/UserGuide". Change it to your personal site, e.g.

site_url = "https://www.my_user_name.github.io/UserGuide"

Now you can build your pages with the make github macro in the UserGuide/doc/ directory, which builds the files
and copies them to the top level of your directory.

make github

You should be able to open one of these new HTML files (e.g. UserGuide/index.html) in a browser and navigate
your new documentation. Check that your changes look right. If they are, push to your gh-pages branch from the
UserGuide/ directory.

git add .
git commit -m 'built my-new-branch'
git push -f origin gh-pages

On GitHub, navigate to your fork of the repository and go to Settings. In the GitHub Pages section, select the “gh-
pages branch” from the Source dropdown. Check that your website is published at the given URL.
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For each time you add changes to another branch later, just merge into gh-pages and rebuild.

git checkout gh-pages
git merge origin/my_branch
cd doc/
make github

Automatically building documentation

Constantly rebuilding documentation can become tedious when you have many changes to make. Use sphinx-autobuild
to rebuild documentation every time you make changes to any document, including Jupyter notebooks. Install
sphinx-autobuild:

pip install sphinx-autobuild

Then, run the following command in the doc/ directory:

python -m sphinx_autobuild source build

This will start a local webserver at http://localhost:8000/, which will refresh every time you save changes to a file in
the documentation. This is helpful for both the user guide (first navigate to UserGuide/doc) and the main repository
documentation (navigate to package/doc/sphinx).

Using pre-commit hooks

Manually editing files can often lead to small inconsistencies: a whitespace here, a missing carriage return there. A
tool called pre-commit can be used to automatically fix these problems, before a git commit is made. To enable the
pre-commit hooks, run the following:

pre-commit install

To perform the pre-commit checks on all the files, run the following:

pre-commit run --all-files
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To remove the pre-commit hooks from your .git directory, run the following:

pre-commit uninstall

2.1.38 Preparing a release

Rules for release branches:

• Branch from develop

• Naming convention: package-* where * is a version number

Release policy and release numbering

We use a MAJOR.MINOR.PATCH scheme to label releases. We adhere to the idea of semantic versioning (semantic
versioning was introduced with release 0.9, see Issue 200): Given a version number MAJOR.MINOR.PATCH, we
increment the:

• MAJOR version when we make incompatible API changes,
• MINOR version when we add functionality in a backwards-compatible manner, and

• PATCH version when we make backwards-compatible bug fixes.
However, as long as the MAJOR number is 0 (i.e. the API has not stabilized), even MINOR increases may introduce
incompatible API changes. As soon as we have a 1.0.0 release, the public API can only be changed in a backward-
incompatible manner with an increase in MAJOR version.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

The CHANGELOG lists important changes for each release.

MAJOR, MINOR and PATCH numbers are integers that increase monotonically.

The release number is set in setup.py and in MDAnalysis.__version__ (MDAnalysis/version.py), e.g.

RELEASE = '0.7.5'

While the code is in development (i.e. whenever we are not preparing a release!) the release number gets the suffix
-dev0, e.g.

RELEASE = '0.7.6-dev0'

so that people using the develop branch from the source repository can immediately see that it is not a final release.
For example, “0.7.6-dev0” is the state before the 0.7.6 release.

Typical workflow for preparing a release

Summary of tasks

• Declare a feature freeze on develop via discord and/or GitHub Discussions (Announcement)

• Finalize the CHANGELOG file with the date of release

• Increment the version across MDAnalysis and MDAnalysisTests (4 places)

• Merge changes into develop
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• Create a tag from develop named release-<version_number>

• Create a package-<version_number> branch from develop

• Add rebuilt C / C++ files to package-<version_number>

• Create a tag from package-<version_number>

• Check automated testing of source distribution and wheel generation and upload

• Create a new release from newly created tag

• Check that deployment actions have adequately pushed dist and wheels to PyPi

• Manually upload Cirrus CI wheels (temporary)

• Update conda-forge packages

• Create a blog post outlining the release

• Increment develop branch files ready for the next version

• Clean up old dev docs builds

Getting the develop branch ready for a release

1. Declare feature freeze on develop via discord and GitHub Discussions (Announcement)

2. Create a pre-release feature branch from develop

3. Finalise the CHANGELOG with the release number and date. Ensure that the CHANGELOG summarizes important
changes and includes all authors that contributed to this release.

4. Make sure the version number matches the release version. The following files need to be updated:
package/MDAnalysis/version.py, package/setup.py, testsuite/MDAnalysisTests/__init__.py,
and testsuite/setup.py.

5. Create a pull request against develop from this branch.

Packaging the release

1. Create a new tag from develop named release-<version_number>where <version_number> is the release
version number (this tag contains a snapshot of the Python source files as they were when the release was created):

git tag -m "release 0.7.5 of MDAnalysis and MDAnalysisTests" release-0.7.5
git push --tags origin

2. Create a package-<version_number> branch from develop. This branch is automatically protected, so you
will also need to create a separate branch to create commits via PR against package-<version_number>.

3. Generate new C/C++ files and commit them to the package-<version_number> branch via PR. We recom-
mend generate the C/C++ files by building a source distribution tarball so you can check at the same time that
there are no issues with the distribution creation process:

# MDAnalysis
cd package/
pipx run build --sdist

4. Once committed, create a new tag based on package-<version_number> (this tag will contain a record of all
the files as they were deployed to users for that version):
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git tag -m "package 0.7.5 of MDAnalysis and MDAnalysisTests" package-0.7.5
git push --tags origin

5. Upon creation of the new package-* tag, the deploy github action workflow will be automatically triggered to
create source/wheels, upload them to testpypi, re-download them and run tests.

6. If all the tests come back green, you are good to go for a full release.

1. If tests fail you will need to work out the cause of the failure.

1. A temporary github actions failure

Re-run the action and wait for the tests to complete

2. An issue with the source code.

1. Delete the current package-* branch, and the newly created tags

2. Add the new changes to develop and restart the release process.

3. If the code had successfully uploaded to testpypi and failed later, you will need to create a test
package-* tag which contains a different release number of in the source code (bumpy by a
minor release or add a -beta modifier). Note: if the code had not successfully uploaded you can
just continue the release process as normal.

4. If CI comes back green then delete the test tag, and create a normal package-* tag with the correct
version number.

5. The github action will fail, but this is ok since we tested it with the test tag above.

Completing the release

If everything works, you can now complete the release by:

1. Creating a release on GitHub based on the newly created package-<version_number> tag.

2. Make sure you include relevant release notes, including any known issues and highlights for the release.

3. Once published, the deploy github action will be triggered which will upload the source distributions and wheels
to PyPI.

1. If the deploy github action fails and no files have been uploaded, then restart the action.

2. If the action fails and some files have been uploaded, then you will not be able to re-upload to PyPI. At this
point you will need to yank the release from PyPI and create a new minor version and re-deploy it.

Manually upload Cirrus CI wheels (temporary)

Unfortunately the deployment of Cirrus CI generated wheels (for osx-arm64 and linux-aarch64) does not get properly
triggered by a release. However, they are properly uploaded to TestPyPi

1. Go to the recently updated TestPyPi release and download all the .whl files which have the tags arm64 and
aarch64.

2. From a local directory upload these wheels using twine.

twine upload -r pypi *.whl --verbose
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Update conda-forge packages

On push to PyPI, the conda-forge bot should automatically pick up the presense of a new version and create a pull
request on the MDAnalysis feedstock and the MDAnalysisTests feedstock. You will need to merge the MDAnalysis
feedstock followed by the MDAnalysisTests feedstock in order for the new package to appear on conda-forge.

To do this you will need to:

1. Update the meta.yaml files as necessary, especially bumping up the python and dependency minimum versions
as necessary.

2. If NumPy pins differ from those conda-forge uses, you will need to update the conda_build_config.yaml
accordingly.

3. Ask the conda-forge bot to re-render, check that CI returns green, approve and merge the pull request.

Create a release of the UserGuide

For now, the UserGuide is released at the same time as the core library. If it’s failing please fix before you do the tag /
release. Here is how to update the snapshots

1. Update the version of MDA used by the UserGuide to the release version.

2. Re-generate the Syrupy test snapshots, and commit those a to git and confirm the build passes.

3. Make a Pull Request with a re-generated releases.md which contains a copy of the GitHub release notes. This
can be generated by doing:

cd doc/source/scripts
python gen_release_notes.py

4. Create a new release tag and upload them for the UserGuide repository.

git tag -m 'release 2.6.1 of the MDAnalysis UserGuide' release-2.6.1
git push --tags origin

5. This will automatically trigger a Github Action to build a new set of docs for that release and upload them. Due
to the large size of the gh-pages branch on the UserGuide, this can be both slow and flaky, make sure to keep
an eye out for any potential failures.

Create a blog post outlining the release

Create a blog post outlining the release notes and publicize it on GitHub Discussions / discord / twitter/ etc. . . !
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Increment develop branch files ready for the next version

Once the release is completed you can go ahead and update the develop branch so that it is ready for the next round
of development.

1. Update the 4 version file locations with the -dev0 appended version of the next release.

2. Update the CHANGELOG with a new entry for the next release.

3. Once these changes are merged into the develop branch, message the developers on discord and GitHub Dis-
cussions letting them know that the feature freeze is over.

Clean up old developer builds of the documentation

Whilst new docs are automatically deployed on a release, old developer builds (appended with -dev) are not automat-
ically cleaned up. To avoid causing large amounts of files being uploaded to GitHub Pages, we need to delete these
old developer builds manually. To do this switch to the gh-pages branch, delete these old files, and push the change
directly. You should do this for both the core library and the UserGuide.

While this is still a manual procedure, you should also edit versions.json to remove the old dev links.

2.1.39 Module imports in MDAnalysis

We are striving to keep module dependencies small and lightweight (i.e., easily installable with pip).

General rules for importing

• Imports should all happen at the start of a module (not inside classes or functions).

• Modules must be imported in the following order:

– future (from __future__ import absolute_import, print_function, division)

– Compatibility imports (e.g. six)

– global imports (installed packages)

– local imports (MDAnalysis modules)

• use absolute imports in the library (i.e. relative imports must be explicitly indicated)

For example:

from __future__ import absolute_import
from six.moves import range

import numpy as np

import .core
import ..units
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Module imports in MDAnalysis.analysis

1. In MDAnalysis.analysis, all imports must be at the top level (as in the General Rule) — see Issue 666 for
more information.

2. Optional modules can be imported

3. No analysis module is imported automatically at the MDAnalysis.analysis level to avoid breaking the instal-
lation when optional dependencies are missing.

Module imports in the test suite

• Use the module import order in General rules for importing, but import MDAnalysis modules before
MDAnalysisTests imports

• Do not use relative imports (e.g. import .datafiles) in the test suite. This breaks running the tests from
inside the test directory (see Issue 189 for more information)

• Never import the MDAnalysis module from the __init__.py of MDAnalysisTests or from any of its plugins
(it’s ok to import from test files). Importing MDAnalysis from the test setup code will cause severe coverage
underestimation.

Module dependencies in the code

List of core module dependencies

Any module from the standard library can be used, as well as the following nonstandard libraries:

• six

• numpy

• biopython

• gridDataFormats

• mmtf-python

• scipy

• matplotlib

because these packages are always installed.

If you must depend on a new external package, first discuss its use on GitHub Discussions (Development) or as part of
the issue/pull request.

Modules in the “core”

The core of MDAnalysis contains all packages that are not in MDAnalysis.analysis or MDAnalysis.
visualization. Only packages in the List of core module dependencies can be imported.
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Optional modules in MDAnalysis.analysis and MDAnalysis.visualization

Modules under MDAnalysis.analysis are considered independent from the core package. Each analysis module can
have its own set of dependencies. We strive to keep them small, but module authors are, in principle, free to import what
they need. When analysis modules import packages outside of List of core module dependencies, the dependencies are
considered optional (and should be listed in setup.py under analysis). (See also Issue 1159 for more discussion.)

A user who does not have a specific optional package installed must still be able to import everything else in MDAnal-
ysis. An analysis module may simply raise an ImportError if a package is missing. However, it is recommended
that the module should print and log an error message notifying the user that a specific additional package needs to be
installed to use it.

If a large portion of the code in the module does not depend on a specific optional module then you should:

• guard the import at the top level with a try/except

• print and log a warning

• only raise an ImportError in the specific function or method that would depend on the missing module.

2.1.40 Tests in MDAnalysis

Note: Parts of this page came from the Contributing to pandas guide.

Whenever you add new code, you should create an appropriate test case that checks that your code is working as it
should. This is very important because:

1. Firstly, it ensures that your code works as expected, i.e.

• it succeeds in your test cases and

• it fails predictably

2. More importantly, in the future we can always test that it is still working correctly. Unit tests are a crucial
component of proper software engineering (see e.g. Software Carpentry on Testing) and a large (and growing)
test suite is one of the strengths of MDAnalysis.

Adding tests is one of the most common requests after code is pushed to MDAnalysis. Therefore, it is worth getting in
the habit of writing tests ahead of time so this is never an issue. We strive for 90% our code to be covered by tests.

We strongly encourage contributors to embrace test-driven development. This development process “relies on the
repetition of a very short development cycle: first the developer writes an (initially failing) automated test case that
defines a desired improvement or new function, then produces the minimum amount of code to pass that test.” So,
before actually writing any code, you should write your tests. Often the test can be taken from the original GitHub
issue. However, it is always worth considering additional use cases and writing corresponding tests.

Like many packages, MDAnalysis uses pytest and some of the numpy.testing framework.
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Running the test suite

It is recommended that you run the tests from the mdanalysis/testsuite/MDAnalysisTests/ directory.

cd testsuite/MDAnalysisTests
pytest --disable-pytest-warnings

All tests should pass: no FAIL or ERROR cases should be triggered; SKIPPED or XFAIL are ok. For anything that
fails or gives an error, ask on GitHub Discussions or raise an issue on the Issue Tracker.

We use the --disable-pytest-warnings when the whole testsuite is running, as pytest raises a lot of false positives
when we warn users about missing topology attributes. When running single tests or only single modules, consider
running the tests with warnings enabled (i.e. without --disable-pytest-warnings). This allows you to see if you
trigger any un-caught deprecation warnings or other warnings in libraries we use.

To run specific tests just specify the path to the test file:

pytest testsuite/MDAnalysisTests/analysis/test_align.py

Specific test classes inside test files, and even specific test methods, can also be specified:

# Test the entire TestContactMatrix class
pytest testsuite/MDAnalysisTests/analysis/test_analysis.py::TestContactMatrix

# Test only test_sparse in the TestContactMatrix class
pytest testsuite/MDAnalysisTests/analysis/test_analysis.py::TestContactMatrix::test_
→˓sparse

This is very useful when you add a new test and want to check if it passes. However, before you push your code to
GitHub, make sure that your test case runs and that all other test cases are still passing.

Testing in parallel

Running the tests serially can take some time, depending on the performance of your computer. You can speed this up
by using the plugin pytest-xdist to run tests in parallel by specifying the --numprocesses option:

pip install pytest-xdist
pytest --disable-pytest-warnings --numprocesses 4

You can try increasing the number of processes to speed up the test run. The number of processes you can use depends
on your machine.

Test coverage

The tool pytest-cov can be used to generate the coverage report locally:

pip install pytest-cov
pytest --cov=MDAnalysis

Note: You can use the --numprocesses flag to run tests in parallel with the above command too. This will print the
coverage statistic for every module in MDAnalysis at the end of a run. To get detailed line by line statistics you can
add the --cov-report=html flag. This will create a htmlcov folder (in the directory you run the command from)
and there will be an index.html file in this folder. Open this file in your browser and you will be able to see overall
statistics and detailed line coverage for each file.
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Continuous Integration tools

When you submit your pull request, several continuous integration tools will run a suite of tests. These should all pass
before your code can be merged into MDAnalysis. You can check tests locally by running the test suite.

If your pull request fails immediately with an appveyor error, it is likely that you have merge conflicts with the latest
code in the develop branch. Rebase your code and update your branch by pushing your changes.

If you get an error with travis, it is likely that you’ve failed a particular test. You should update your code and push
again.

If you get Codecov errors, this means that your changes have not been adequately tested. Add new tests that address
the “missed” lines, and push again.

Ideally, you want all tests to pass. This will look like:

GitHub Actions

Configured in .github/ directory. Uses YAML syntax to define both workflows and actions. See GitHub Actions
documentation for more information.

Azure

Configured in azure-pipelines.yml file. Uses YAML syntax to define Azure Pipelines tasks. See Azure Pipelines
documentation for more information.
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Cirrus CI

The file .cirrus.star tells the provider what to do, it uses the Starlark syntax in YAML to define tasks. See Cirrus CI
documentation for more information.

The actual files defining the workflows are in:

• maintainer/ci/cirrus-ci.yml

• maintainer/ci/cirrus-deploy.yml

Codecov

Code coverage measures how many lines, and which lines, of code are executed by a test suite. Codecov is a service
that turns code coverage reports into a single visual report. Each line is described as one of three categories:

• a hit indicates that the source code was executed by the test suite.

• a partial indicates that the source code was not fully executed by the test suite; there are remaining branches that
were not executed.

• a miss indicates that the source code was not executed by the test suite.

Coverage is the ratio of hits / (sum of hit + partial + miss). See the Codecov documentation for more
information.

MDAnalysis aims for 90% code coverage; your pull request will fail the Codecov check if the coverage falls below
85%. You can increase coverage by writing futher tests.

On your pull request, Codecov will leave a comment with three sections:

• a visual map of the areas with coverage changes

• a summary of changes in coverage
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• a list of files with changes

Clicking on one of those files will show the Codecov Diff view, highlighting the lines of code that have been missed
by tests. In the image below, the column on the left hand side shows hits (green) and misses (red); the lighter colours
highlighting the code show lines added (light green) or removed (light red).

Changing to the Coverage Changes view highlights how your additions have changed the test coverage. See the docu-
mentation for viewing source code for more information.
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Writing new tests

Tests are organised by top-level module. Each file containing tests must start with test_. The tests themselves also
have to follow the appropriate naming and organisational conventions.

Use classes to group tests if it makes sense (e.g., if the test class will be inherited by another test class and the code can
be reused). We prefer subclassing over parametrizing classes (for examples, have a look at the MDAnalysisTests/
topology module, where each class often tests a different file). For tests that are standalone, leave them as plain
functions.

General conventions

Assertions

Use plain assert statements for comparing single values, e.g.

def test_foo_is_length_3(foo):
assert len(foo) == 3

To check equality up to a certain precision (e.g. floating point numbers and iterables of floats), use
assert_almost_equal() from numpy.testing. Do not manually round off the value and use plain assert state-
ments. Do not use pytest.approx.

from numpy.testing import assert_almost_equal

def test_equal_coordinates():
ref = mda.Universe(PSF, PDB_small)
u = mda.Universe(PDB_small)
assert_almost_equal(u.atoms.positions, ref.atoms.positions)

To test for exact equality (e.g. integers, booleans, strings), use assert_equal() from numpy.testing. As with
assert_almost_equal(), this should be used for iterables of exact values as well. Do not iterate over and compare
every single value.

from numpy.testing import assert_equal

def test_equal_arrays(array1, array2):
assert_equal(array1, array2)

Do not use assert_array_equal or assert_array_almost_equal from numpy.testing to compare array/array-
like data structures. Instead, use assert_equal() or assert_almost_equal(). The former set of functions equate
arrays and scalars, while the latter do not:
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In [1]: from numpy.testing import assert_equal, assert_array_equal

In [2]: assert_array_equal([1], 1)

In [3]: assert_equal([1], 1)
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[3], line 1
----> 1 assert_equal([1], 1)

File ~/checkouts/readthedocs.org/user_builds/mdanalysisuserguide/conda/latest/lib/
→˓python3.9/site-packages/numpy/testing/_private/utils.py:314, in assert_equal(actual,␣
→˓desired, err_msg, verbose)

312 # isscalar test to check cases such as [np.nan] != np.nan
313 if isscalar(desired) != isscalar(actual):

--> 314 raise AssertionError(msg)
316 try:
317 isdesnat = isnat(desired)

AssertionError:
Items are not equal:
ACTUAL: [1]
DESIRED: 1

Do not use anything from numpy.testing that depends on nose, such as assert_raises.

Testing exceptions and warnings

Do not use assert_raises from numpy.testing or the pytest.mark.raises decorator to test for particular ex-
ceptions. Instead, use context managers:

def test_for_error():
a = [1, 2, 3]
with pytest.raises(IndexError):

b = a[4]

def test_for_warning():
with pytest.warns(DeprecationWarning):

deprecated_function.run()

Failing tests

To mark an expected failure, use pytest.mark.xfail() decorator:

@pytest.mark.xfail
def tested_expected_failure():

assert 1 == 2

To manually fail a test, make a call to pytest.fail():
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def test_open(self, tmpdir):
outfile = str(tmpdir.join('lammps-writer-test.dcd'))
try:

with mda.coordinates.LAMMPS.DCDWriter(outfile, n_atoms=10):
pass

except Exception:
pytest.fail()

Skipping tests

To skip tests based on a condition, use pytest.mark.skipif(condition) decorator:

import numpy as np
try:

from numpy import shares_memory
except ImportError:

shares_memory = False

@pytest.mark.skipif(shares_memory == False,
reason='old numpy lacked shares_memory')

def test_positions_share_memory(original_and_copy):
# check that the memory in Timestep objects is unique
original, copy = original_and_copy
assert not np.shares_memory(original.ts.positions, copy.ts.positions)

To skip a test if a module is not available for importing, use pytest.importorskip('module_name')

def test_write_trajectory_netCDF4(self, universe, outfile):
pytest.importorskip("netCDF4")
return self._test_write_trajectory(universe, outfile)

Fixtures

Use fixtures as much as possible to reuse “resources” between test methods/functions. Pytest fixtures are functions that
run before each test function that uses that fixture. A fixture is typically set up with the pytest.fixture() decorator,
over a function that returns the object you need:

@pytest.fixture
def universe(self):

return mda.Universe(self.ref_filename)

A function can use a fixture by including its name in its arguments:

def test_pdb_write(self, universe):
universe.atoms.write('outfile.pdb')

The rule of thumb is to use the largest possible scope for the fixture to save time. A fixture declared with a class scope
will run once per class; a fixture declared with a module scope will only run once per module. The default scope is
"function".
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@pytest.fixture(scope='class')
def universe(self):

return mda.Universe(self.ref_filename)

Testing the same function with different inputs

Use the pytest.mark.parametrize() decorator to test the same function for different inputs rather than looping.
These can be stacked:

@pytest.mark.parametrize('pbc', (True, False))
@pytest.mark.parametrize('name, compound', (('molnums', 'molecules'),

('fragindices', 'fragments')))
# fragment is a fixture defined earlier
def test_center_of_mass_compounds_special(self, fragment,

pbc, name, compound):
ref = [a.center_of_mass() for a in fragment.groupby(name).values()]
com = fragment.center_of_mass(pbc=pbc, compound=compound)
assert_almost_equal(com, ref, decimal=5)

The code above runs test_center_of_mass_compounds_special 4 times with the following parameters:

• pbc = True, name = 'molnums', compound = 'molecules'

• pbc = True, name = 'fragindices', compound = 'fragments'

• pbc = False, name = 'molnums', compound = 'molecules'

• pbc = False, name = 'fragindices', compound = 'fragments'

Temporary files and directories

Do not use os.chdir() to change directories in tests, because it can break the tests in really weird ways (see Issue
556). To use a temporary directory as the working directory, use the tmpdir.as_cwd() context manager instead:

def test_write_no_args(self, u, tmpdir): # tmpdir is an in-built fixture
with tmpdir.as_cwd():

u.atoms.write()

To create a temporary file:

def outfile(tmpdir):
temp_file = str(tmpdir.join('test.pdb'))
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Module imports

Do not use relative imports in test files, as it means that tests can no longer be run from inside the test directory. Instead,
use absolute imports.

from .datafiles import PDB # this is relative and will break!
from MDAnalysisTests.datafiles import PDB # use this instead

Tests for analysis and visualization modules

Tests for analysis classes and functions should at a minimum perform regression tests, i.e., run on input and compare
to values generated when the code was added so that we know when the output changes in the future. (Even better are
tests that test for absolute correctness of results, but regression tests are the minimum requirement.)

Any code in MDAnalysis.analysis that does not have substantial testing (at least 70% coverage) will be moved to a
special MDAnalysis.analysis.legacymodule by release 1.0.0. This legacy module will come with its own warning
that this is essentially unmaintained functionality, that is still provided because there is no alternative. Legacy packages
that receive sufficient upgrades in testing can come back to the normal MDAnalysis.analysis name space.

No consensus has emerged yet how to best test visualization code. At least minimal tests that run the code are typically
requested.

Using test data files

If possible, re-use the existing data files in MDAnalysis for tests; this helps to keep the (separate) MDAnalysisTests
package small. If new files are required (e.g. for a new coordinate Reader/Writer) then:

1. Use small files (e.g. trajectories with only a few frames and a small system).

2. Make sure that the data are not confidential (they will be available to everyone downloading MDAnalysis) and
also be aware that by adding them to MDAnalysis you license these files under the GNU Public Licence v2 (or a
compatible licence of your choice — otherwise we cannot include the files into MDAnalysis).

3. Add the files to the testsuite/MDAnalysisTests/data directory and appropriate file names and descriptions
to testsuite/MDAnalysisTests/datafiles.py.

4. Make sure your new files are picked up by the pattern-matching in testsuite/setup.py (in the package_data
dictionary).

2.1.41 References

MDAnalysis and the included algorithms are scientific software that are described in academic publications. Please
cite these papers when you use MDAnalysis in published work.
It is possible to automatically generate a list of references for any program that uses MDAnalysis. This list (in common
reference manager formats) contains the citations associated with the specific algorithms and libraries that were used
in the program.
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Citations using Duecredit

Citations can be automatically generated using duecredit, depending on the packages used. Duecredit is easy to install
via pip. Simply type:

pip install duecredit

duecredit will remain an optional dependency, i.e. any code using MDAnalysis will work correctly even without due-
credit installed.

A list of citations for yourscript.py can be obtained using simple commands.

cd /path/to/yourmodule
python -m duecredit yourscript.py

or set the environment variable DUECREDIT_ENABLE

DUECREDIT-ENABLE=yes python yourscript.py

Once the citations have been extracted (to a hidden file in the current directory), you can use the duecredit program
to export them to different formats. For example, one can display them in BibTeX format, using:

duecredit summary --format=bibtex

Please cite your use of MDAnalysis and the packages and algorithms that it uses. Thanks!
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