

Welcome to MDAnalysis User Guide’s documentation!

MDAnalysis version: 2.8.0-dev0

Last updated: Dec 29, 2023

MDAnalysis (www.mdanalysis.org [https://www.mdanalysis.org]) is a Python
toolkit to analyse molecular dynamics files and trajectories in many popular formats. MDAnalysis can write
most of these formats, too, together with atom selections for use in visualisation tools or other analysis programs.
It provides a fast framework for complex analysis tasks,
as well as flexible tooling to construct your own analyses.

Why MDAnalysis?

The typical use case for MDAnalysis is to manipulate or analyse molecular dynamics trajectories. The library focuses on two key features:

	Memory efficiency.
The size of trajectory data can quickly overwhelm the memory resources of your computer.
MDAnalysis typically accesses your trajectory by only loading data for one frame at a time.
This allows you to work with trajectories of any length without difficulty.

	Flexibility.
MDAnalysis is constructed to be easily extensible.
If an analysis method is not already available in MDAnalysis,
you can write your own custom trajectory analysis with the building blocks provided.
If you need to read in a custom file format, you can construct your own Reader or Parser that will automatically get picked up when MDAnalysis is constructing a Universe from files. You can create and add your own labels for atoms, residues, or segments (called topology attributes) and relationships between atoms (e.g. bonds, angles).

Participating

MDAnalysis welcomes all contributions from its users. There are many ways you can help improve MDAnalysis, from asking questions on the `mdnalysis-discussion`_ mailing list, to raising issues on the Issue Tracker [https://github.com/MDAnalysis/mdanalysis/issues], to adding your own code. Please see Contributing to MDAnalysis for an introduction and guide to contributing to the code and documentation.

Important

Ground rules and expectations

The MDAnalysis community subscribes to a Code of Conduct [https://www.mdanalysis.org/pages/conduct/]. By participating in this project and community, you agree to abide by its terms. Please read it.

In general, we expect you to be kind and thoughtful in your conversations around this project. We all come from different backgrounds and projects, which means we will not always agree. Try to listen and understand why others hold their viewpoints in discussions. Rather than blaming each other, focus on helping to resolve issues and learning from mistakes.

Communications

Questions and discussions about MDAnalysis take place on GitHub Discussions [https://github.com/MDAnalysis/mdanalysis/discussions] and this repository’s Issue Tracker [https://github.com/MDAnalysis/mdanalysis/issues]. Anybody is welcome to join these conversations. Please ask questions about the usage of MDAnalysis on the `mdnalysis-discussion`_ mailing list, and report problems on the Issue Tracker [https://github.com/MDAnalysis/mdanalysis/issues].

Wherever possible, do not take these conversations to private channels, including contacting the maintainers directly. Keeping communication public means everybody can benefit and learn from the conversation.

Installation

The latest versions of MDAnalysis can be installed using conda or pip.
Currently, the conda releases only support serial calculations.
If you plan to use the parallel OpenMP algorithms, you need to
install MDAnalysis with pip and have a working OpenMP installation.

MDAnalysis has a separate test suite MDAnalysisTests that is required to run the test cases and examples.
The test files change less frequently, take up around 90 MB of space,
and are not needed for daily use of MDAnalysis. However, they are often used in examples,
including many in this User Guide. If you are not interested in developing
MDAnalysis or using the example files, you most likely don’t need the tests. If you want to
run examples in the User Guide, install the tests.
The tests are distributed separately from the main package.

Note

If you are installing on Windows, you must have
Microsoft Visual C++ 14.0 installed. If your installation
fails with the error message:

error: Microsoft Visual C++ 14.0 is required. Get it with “Build Tools for Visual Studio”: https://visualstudio.microsoft.com/downloads/

Try installing Build Tools for Visual Studio from
https://visualstudio.microsoft.com/downloads/ (scroll
down to the Tools for Visual Studio section).

If you encounter any issues following these instructions, please
ask for help on GitHub Discussions (Installation) [https://github.com/MDAnalysis/mdanalysis/discussions/categories/installation].

conda

If you use conda to manage your Python environment, we highly recommend creating a new environment for MDAnalysis.
This will ensure that you have a clean installation of MDAnalysis and its dependencies, and will not interfere with other packages you may have installed.
We further recommend that you install and use mamba, a faster drop-in replacement for conda.

conda create --name mdanalysis
conda activate mdanalysis
conda install -c conda-forge mamba

To install the latest stable version of MDAnalysis via conda, use the following command. This installs all dependencies needed for full analysis functionality (excluding external programs such as HOLE [http://www.holeprogram.org]):

mamba install -c conda-forge mdanalysis

To upgrade:

mamba update mdanalysis

To install the tests:

mamba install -c conda-forge MDAnalysisTests

If you intend to use MDAnalysis in JupyterLab, you will have to install
an extra package for the progress bar in analysis classes:

conda install -c conda-forge nodejs
jupyter labextension install @jupyter-widgets/jupyterlab-manager

pip

The following command will install or upgrade the latest stable version of MDAnalysis via pip, with core dependencies. This means that some packages required by specific analysis modules will not be installed.

pip install --upgrade MDAnalysis

If you need to install a fully-featured MDAnalysis, add the analysis tag. As with conda, this will not install external programs such as HOLE [http://www.holeprogram.org].

pip install --upgrade MDAnalysis[analysis]

To install/upgrade tests:

pip install --upgrade MDAnalysisTests

If you intend to use MDAnalysis in JupyterLab, you will have to install
an extra package for the progress bar in analysis classes:

pip install nodejs
jupyter labextension install @jupyter-widgets/jupyterlab-manager

Development versions

To install development versions of MDAnalysis, you can compile it from source. In order to install from source, you will need numpy and cython. See Creating a development environment for instructions on how to create a full development environment.

git clone https://github.com/MDAnalysis/mdanalysis
cd mdanalysis
assuming you have already installed required dependencies
pip install -e package/

And to install the test suite:

pip install -e testsuite/

Testing

The tests rely on the pytest and numpy packages, which must also be installed. Run tests with:

pytest --disable-pytest-warnings --pyargs MDAnalysisTests

All tests should pass (i.e. no FAIL, ERROR); SKIPPED or XFAIL are ok. If anything fails or gives an error,
ask on GitHub Discussions [https://github.com/MDAnalysis/mdanalysis/discussions] or raise an issue [https://github.com/MDAnalysis/mdanalysis/issues].

Testing MDAnalysis can take a while, as there are quite a few tests.
The plugin pytest-xdist [https://github.com/pytest-dev/pytest-xdist] can be used to run tests in parallel.

pip install pytest-xdist
pytest --disable-pytest-warnings --pyargs MDAnalysisTests --numprocesses 4

Custom compiler flags and optimised installations

You can pass any additional compiler flags for the C/C++ compiler using the extra_cflags variable in setup.cfg.
This allows you to add any additional compiler options required for your architecture.

For example, extra_cflags can be used to tune your MDAnalysis installation for your current architecture using the -march, -mtune, -mcpu and related compiler flags.
Which particular compiler flags to use depends on your CPU architecture. An example for an x86_64 machine would be to change the line in setup.cfg as follows:

- #extra_cflags =
+ extra_cflags = -march=native -mtune=native

Use of these flags can give a significant performance boost where the compiler can effectively autovectorise.

Be sure to use the recommended flags for your target architecture. For example, ARM platforms recommend using -mcpu instead of -mcpu, while
PowerPC platforms prefer both -mcpu and -mtune.

Full dicussion of the these flags is available elsewhere (such as here in this wiki [https://wiki.gentoo.org/wiki/GCC_optimization#-march] or in this ARM [https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/compiler-flags-across-architectures-march-mtune-and-mcpu] blog post) and a list of supported options should be provided by your compiler. The list for GCC [https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html] is provided here.

Warning

Use of these compiler options is considered advanced and may reduce the binary compatibility of MDAnalysis significantly, especially if using -march,
making it usable only on a matching CPU architecture to the one it is compiled on. We strongly recommend that you run the test suite on your intended platform
before proceeding with analysis.

In cases where you might encounter multiple CPU architectures (e.g. on a supercomputer where the login node and compute node have different architectures), you should avoid changing these options unless you are experienced with compiling software in these situations.

Additional datasets

MDAnalysisData [https://www.mdanalysis.org/MDAnalysisData/] is an additional package with datasets that can be used in example tutorials. You can install it with conda or pip:

conda
conda install -c conda-forge mdanalysisdata
pip
pip install --upgrade MDAnalysisData

This installation does not download all the datasets; instead, the datasets are cached when they are first downloaded using a Python command.

Quick start guide

MDAnalysis version: ≥ 0.18.0

Last updated: December 2022 with MDAnalysis 2.4.0

This guide is designed as a basic introduction to MDAnalysis to get you up and running. You can see more complex tasks in our Example notebooks [https://userguide.mdanalysis.org/stable/examples/README.html]. This page outlines how to:

	load a molecular dynamics structure or trajectory

	work with AtomGroups, a central data structure in MDAnalysis

	work with a trajectory

	write out coordinates

	use the analysis algorithms in MDAnalysis

	correct and automated citation of MDAnalysis and algorithms

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, GRO, XTC

import warnings
suppress some MDAnalysis warnings about PSF files
warnings.filterwarnings('ignore')

from matplotlib import pyplot as plt

print(mda.Universe(PSF, DCD))
print("Using MDAnalysis version", mda.__version__)

%matplotlib inline

<Universe with 3341 atoms>
Using MDAnalysis version 2.6.0-dev0

This tutorial assumes that you already have MDAnalysis installed. Running the cell above should give something similar to:

<Universe with 3341 atoms>
2.6.0

If you get an error message, you need to install MDAnalysis. If your version is under 0.18.0, you need to upgrade MDAnalysis. Instructions for both are here. [https://www.mdanalysis.org/UserGuide/installation] After installing, restart this notebook.

Overview

MDAnalysis is a Python package that provides tools to access and analyse data in molecular dynamics trajectories. Several key data structures form the backbone of MDAnalysis.

	A molecular system consists of particles. A particle is represented as an Atom object, even if it is a coarse-grained bead.

	Atoms are grouped into AtomGroup [https://www.mdanalysis.org/UserGuide/atomgroup]s. The AtomGroup is probably the most important class in MDAnalysis, as almost everything can be accessed through it. See Working with atoms below.

	A Universe contains all the particles in a molecular system in an AtomGroup accessible at the .atoms attribute, and combines it with a trajectory at .trajectory.

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed. The trajectory attribute of a Universe is usually a file reader. Think of the trajectory as a function \(X(t)\) of the frame index \(t\) that only makes the data from this specific frame available. This structure is important because it allows MDAnalysis to work with trajectory files too large to fit into the computer’s memory.

MDAnalysis stores trajectories using its internal units: Å (ångström) for length and ps (picosecond) for time, regardless of the original MD data format.

Loading a structure or trajectory

Working with MDAnalysis typically starts with loading data into a Universe, the central data structure in MDAnalysis. The user guide [https://www.mdanalysis.org/UserGuide/universe] has a complete explanation of ways to create and manipulate a Universe.

The first arguments for creating a Universe are topology and trajectory files.

	A topology file is always required for loading data into a Universe. A topology file lists atoms, residues, and their connectivity. MDAnalysis accepts the PSF, PDB, CRD, and GRO formats.

	A topology file can then be followed by any number of trajectory files. A trajectory file contains a list of coordinates in the order defined in the topology. If no trajectory files are given, then only a structure is loaded. If multiple trajectory files are given, the trajectories are concatenated in the given order. MDAnalysis accepts single frames (e.g. PDB, CRD, GRO) and timeseries data (e.g. DCD, XTC, TRR, XYZ).

[2]:

psf = mda.Universe(PSF)
print(psf)
print(hasattr(psf, 'trajectory'))

<Universe with 3341 atoms>
False

As PSF files don’t contain any coordinate information and no trajectory file has been loaded, the psf universe does not contain a trajectory. If the topology file does contain coordinate information, a trajectory of 1 frame is created.

[3]:

gro = mda.Universe(GRO)
print(gro)
print(len(gro.trajectory))

<Universe with 47681 atoms>
1

For the remainder of this guide we will work with the universe u, created below. This is a simulation where the enzyme adenylate kinase samples a transition from a closed to an open conformation (Beckstein et al., 2009) [https://doi.org/10.1016/j.jmb.2009.09.009].

[4]:

u = mda.Universe(PSF, DCD)
print(u)
print(len(u.trajectory))

<Universe with 3341 atoms>
98

Note

The MDAnalysis test suite is packaged with a bunch of test files and trajectories, which are named after their file format. We are using these files throughout this guide for convenience. To analyse your own files, simply replace the PSF and DCD above with paths to your own files. For example:

structure_only = mda.Universe("my_pdb_file.pdb")

Working with groups of atoms

Most analysis requires creating and working with an AtomGroup, a collection of Atoms. For convenience, you can also work with chemically meaningful groups of Atoms such as a Residue or a Segment. These come with analogous containers to AtomGroup: ResidueGroup and SegmentGroup. For instance, the .residues attribute of a Universe returns a ResidueGroup.

[5]:

print(u.residues)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>, <Residue ILE, 3>, ..., <Residue ILE, 212>, <Residue LEU, 213>, <Residue GLY, 214>]>

Selecting atoms

The easiest way to access the particles of your Universe is with the atoms attribute:

[6]:

u.atoms

[6]:

<AtomGroup with 3341 atoms>

This returns an AtomGroup, which can be thought of as a list of Atom objects. Most analysis involves working with groups of atoms in AtomGroups. AtomGroups can easily be created by slicing another AtomGroup. For example, the below slice returns the last five atoms.

[7]:

last_five = u.atoms[-5:]
print(last_five)

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3339: C of type 32 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis supports fancy indexing: passing an array or list of indices to get a new AtomGroup with the atoms at those indices in the old AtomGroup.

[8]:

print(last_five[[0, 3, -1, 1, 3, 0]])

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis has also implemented a powerful atom selection language [https://userguide.mdanalysis.org/stable/selections.html] that is similar to existing languages in VMD [https://www.ks.uiuc.edu/Research/vmd/], PyMol [https://pymol.org/2/], and other packages. This is available with the .select_atoms() function of an AtomGroup or Universe instance:

[9]:

print(u.select_atoms('resname ASP or resname GLU'))

<AtomGroup [<Atom 318: N of type 54 of resname GLU, resid 22 and segid 4AKE>, <Atom 319: HN of type 1 of resname GLU, resid 22 and segid 4AKE>, <Atom 320: CA of type 22 of resname GLU, resid 22 and segid 4AKE>, ..., <Atom 3271: OE2 of type 72 of resname GLU, resid 210 and segid 4AKE>, <Atom 3272: C of type 20 of resname GLU, resid 210 and segid 4AKE>, <Atom 3273: O of type 70 of resname GLU, resid 210 and segid 4AKE>]>

Numerical ranges can be written as first-last or first:last where the range is inclusive. Note that in slicing, the last index is not included.

[10]:

print(u.select_atoms('resid 50-100').n_residues)
print(u.residues[50:100].n_residues)

51
50

Selections can also be combined with boolean operators, and allow wildcards.

For example, the command below selects the \(C_{\alpha}\) atoms of glutamic acid and histidine in the first 100 residues of the protein. Glutamic acid is typically named “GLU”, but histidine can be named “HIS”, “HSD”, or “HSE” depending on its protonation state and the force field used.

[11]:

u.select_atoms("(resname GLU or resname HS*) and name CA and (resid 1:100)")

[11]:

<AtomGroup with 6 atoms>

Note

An AtomGroup created from a selection is sorted and duplicate elements are removed. This is not true for an AtomGroup produced by slicing. Thus, slicing can be used when the order of atoms is crucial.

The user guide [https://userguide.mdanalysis.org/stable/atomgroup.html] has a complete rundown of creating AtomGroups through indexing, selection language, and set methods.

Getting atom information from AtomGroups

An AtomGroup can tell you information about the atoms inside it with a number of convenient attributes.

[12]:

print(u.atoms[:20].names)

['N' 'HT1' 'HT2' 'HT3' 'CA' 'HA' 'CB' 'HB1' 'HB2' 'CG' 'HG1' 'HG2' 'SD'
 'CE' 'HE1' 'HE2' 'HE3' 'C' 'O' 'N']

[13]:

print(u.atoms[50:70].masses)

[1.008 1.008 1.008 12.011 1.008 1.008 12.011 1.008 1.008 1.008
 12.011 15.999 14.007 1.008 12.011 1.008 12.011 1.008 12.011 1.008]

It also knows which residues and segments the atoms belong to. The .residues and .segments return a ResidueGroup and SegmentGroup, respectively.

[14]:

print(u.atoms[:20].residues)
print(u.atoms[-20:].segments)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>]>
<SegmentGroup [<Segment 4AKE>]>

Note that there are no duplicates in the ResidueGroup and SegmentGroup above. To get residue attributes atom-wise, you can access them directly through AtomGroup.

[15]:

print(u.atoms[:20].resnames)

['MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET'
 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'ARG']

You can group atoms together by topology attributes.

For example, to group atoms with the same residue name and atom name together:

[16]:

near_met = u.select_atoms('not resname MET and (around 2 resname MET)')
sorted(near_met.groupby(['resnames', 'names']))

[16]:

[('ALA', 'C'),
 ('ALA', 'HN'),
 ('ARG', 'N'),
 ('ASN', 'O'),
 ('ASP', 'C'),
 ('ASP', 'N'),
 ('GLN', 'C'),
 ('GLU', 'N'),
 ('ILE', 'C'),
 ('LEU', 'N'),
 ('LYS', 'N'),
 ('THR', 'N')]

A complete list of topology attributes can be found in the user guide. [https://userguide.mdanalysis.org/stable/topology_system.html]

AtomGroup positions and methods

The .positions attribute is probably the most important information you can get from an AtomGroup: a numpy.ndarray of coordinates, with the shape (n_atoms, 3).

[17]:

ca = u.select_atoms('resid 1-5 and name CA')
print(ca.positions)
print(ca.positions.shape)

[[11.664622 8.393473 -8.983231]
 [11.414839 5.4344215 -6.5134845]
 [8.959755 5.612923 -3.6132305]
 [8.290068 3.075991 -0.79665166]
 [5.011126 3.7638984 1.130355]]
(5, 3)

A number of other quantities have been defined for an AtomGroup, including:

	.center_of_mass()

	.center_of_geometry()

	.total_mass()

	.total_charge()

	.radius_of_gyration()

	.bsphere() (the bounding sphere of the selection)

See the user guide [https://userguide.mdanalysis.org/stable/topology_system.html] for a complete list and description of AtomGroup methods.

[18]:

print(ca.center_of_mass())

[9.06808195 5.25614133 -3.75524844]

Note

The .center_of_mass() function, like many of the analysis modules in MDAnalysis, relies on having accurate mass properties available. Particle masses may not always be available or accurate! [https://userguide.mdanalysis.org/stable/formats/guessing.html#masses]

Currently, MDAnalysis assigns masses to particles based on their element or ‘atom type’, which is guessed from the particle name. If MDAnalysis guesses incorrectly (e.g. a calcium atom called CA is treated as a \(C_{\alpha}\)), the mass of that atom will be inaccurate. If MDAnalysis has no idea what the particle is (e.g. coarse-grained beads), it will raise a warning, and give that particle a mass of 0.

To be certain that MDAnalysis is using the correct masses, you can set them manually.

MDAnalysis can also create topology geometries [https://userguide.mdanalysis.org/stable/topology_system.html#topology-objects] such as bonds, angles, dihedral angles, and improper angles from an AtomGroup. This AtomGroup has a special requirement: only the atoms involved in the geometry can be in the group. For example, an AtomGroup used to create a bond can only have 2 atoms in it; an AtomGroup used to create a dihedral or improper angle must have 4 atoms.

[19]:

nhh = u.atoms[:3]
print(nhh.names)

['N' 'HT1' 'HT2']

After a topology object such as an angle is created, the value of the angle (in degrees) can be calculated based on the positions of the atoms.

[20]:

angle_nhh = nhh.angle
print(f"N-H-H angle: {angle_nhh.value():.2f}")

N-H-H angle: 37.99

Note that the order of the atoms matters for angles, dihedrals, and impropers. The value returned for an angle is the angle between first and third atom, with the apex at the second. Fancy indexing is one way to get an ordered AtomGroup.

 3
 /
 /
2------1

[21]:

hnh = u.atoms[[1, 0, 2]]
print(hnh.names)

['HT1' 'N' 'HT2']

[22]:

angle_hnh = hnh.angle
print(f"N-H-H angle: {angle_hnh.value():.2f}")

N-H-H angle: 106.20

Working with trajectories

The trajectory of a Universe contains the changing coordinate information [https://userguide.mdanalysis.org/stable/trajectories/trajectories.html]. The number of frames in a trajectory is its length:

[23]:

print(len(u.trajectory))

98

The standard way to assess the information of each frame in a trajectory is to iterate over it. When the timestep changes, the universe only contains information associated with that timestep.

[24]:

for ts in u.trajectory[:20]:
 time = u.trajectory.time
 rgyr = u.atoms.radius_of_gyration()
 print(f"Frame: {ts.frame:3d}, Time: {time:4.0f} ps, Rgyr: {rgyr:.4f} A")

Frame: 0, Time: 1 ps, Rgyr: 16.6690 A
Frame: 1, Time: 2 ps, Rgyr: 16.6732 A
Frame: 2, Time: 3 ps, Rgyr: 16.7315 A
Frame: 3, Time: 4 ps, Rgyr: 16.7223 A
Frame: 4, Time: 5 ps, Rgyr: 16.7440 A
Frame: 5, Time: 6 ps, Rgyr: 16.7185 A
Frame: 6, Time: 7 ps, Rgyr: 16.7741 A
Frame: 7, Time: 8 ps, Rgyr: 16.7764 A
Frame: 8, Time: 9 ps, Rgyr: 16.7894 A
Frame: 9, Time: 10 ps, Rgyr: 16.8289 A
Frame: 10, Time: 11 ps, Rgyr: 16.8521 A
Frame: 11, Time: 12 ps, Rgyr: 16.8549 A
Frame: 12, Time: 13 ps, Rgyr: 16.8723 A
Frame: 13, Time: 14 ps, Rgyr: 16.9108 A
Frame: 14, Time: 15 ps, Rgyr: 16.9494 A
Frame: 15, Time: 16 ps, Rgyr: 16.9810 A
Frame: 16, Time: 17 ps, Rgyr: 17.0033 A
Frame: 17, Time: 18 ps, Rgyr: 17.0196 A
Frame: 18, Time: 19 ps, Rgyr: 17.0784 A
Frame: 19, Time: 20 ps, Rgyr: 17.1265 A

After iteration, the trajectory ‘resets’ back to the first frame. Please see the user guide [https://userguide.mdanalysis.org/stable/trajectories/trajectories.html] for more information.

[25]:

print(u.trajectory.frame)

0

You can set the timestep of the trajectory with the frame index:

[26]:

print(u.trajectory[10].frame)

10

This persists until the timestep is next changed.

[27]:

frame = u.trajectory.frame
time = u.trajectory.time
rgyr = u.atoms.radius_of_gyration()
print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(frame, time, rgyr))

Frame: 10, Time: 11 ps, Rgyr: 16.8521 A

Generally, trajectory analysis first collects frame-wise data in a list.

[28]:

rgyr = []
time = []
protein = u.select_atoms("protein")
for ts in u.trajectory:
 time.append(u.trajectory.time)
 rgyr.append(protein.radius_of_gyration())

This can then be converted into other data structures, such as a numpy array or a pandas DataFrame. It can be plotted (as below), or used for further analysis.

The following section requires the pandas [https://pandas.pydata.org] package (installation: conda install pandas or pip install pandas) and matplotlib [https://matplotlib.org/] (installation: conda install matplotlib or pip install matplotlib)

[29]:

import pandas as pd
rgyr_df = pd.DataFrame(rgyr, columns=['Radius of gyration (A)'], index=time)
rgyr_df.index.name = 'Time (ps)'

rgyr_df.head()

[29]:

 Frequently asked questions

Frequently asked questions

Trajectories

Why do the atom positions change over trajectories?

A fundamental concept in MDAnalysis is that at any one time,
only one time frame of the trajectory is being accessed. The
trajectory attribute of a Universe is actually (usually) a file reader.
Think of the trajectory as a function \(X(t)\) of the frame index \(t\)
that makes the data from this specific frame available. This structure is important
because it allows MDAnalysis to work with trajectory files too large to fit
into the computer’s memory. See Trajectories for more information.

 Examples

Examples

[image: Binder] [https://mybinder.org/v2/gh/MDAnalysis/binder-env-userguide/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252FMDAnalysis%252FUserGuide%26urlpath%3Dtree%252FUserGuide%252Fdoc%252Fsource%252Fexamples%26branch%3Dmaster]

MDAnalysis maintains a collection of Jupyter notebooks as examples
of what the code can do. Each notebook can be downloaded from
GitHub [https://github.com/MDAnalysis/UserGuide/tree/develop/doc/source/examples] to run on your own computer, or viewed as an
online tutorial on the user guide. You can also interact with
each notebook on Binder [https://mybinder.org/v2/gh/MDAnalysis/binder-env-userguide/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252FMDAnalysis%252FUserGuide%26urlpath%3Dtree%252FUserGuide%252Fdoc%252Fsource%252Fexamples%26branch%3Dmaster].

General

	Quick start guide

	Constructing, modifying, and adding to a Universe

	Transformations

	Other

Analysis

	Alignments and RMS fitting
	Aligning a structure to another

	Aligning a trajectory to a reference

	Aligning a trajectory to itself

	Calculating the root mean square deviation of atomic structures

	Calculating the pairwise RMSD of a trajectory

	Calculating the root mean square fluctuation over a trajectory

	Distances and contacts
	Atom-wise distances between matching AtomGroups

	All distances between two selections

	All distances within a selection

	Fraction of native contacts over a trajectory

	Q1 vs Q2 contact analysis

	Contact analysis: number of contacts within a cutoff

	Write your own native contacts analysis method

	Trajectory similarity
	Comparing the geometric similarity of trajectories

	Calculating the Harmonic Ensemble Similarity between ensembles

	Calculating the Clustering Ensemble Similarity between ensembles

	Calculating the Dimension Reduction Ensemble Similarity between ensembles

	Evaluating convergence

	Structure
	Elastic network analysis

	Average radial distribution functions

	Calculating the RDF atom-to-atom

	Protein dihedral angle analysis

	Helix analysis

	Dimension reduction
	Principal component analysis of a trajectory

	Non-linear dimension reduction to diffusion maps

	Polymers and membranes
	Determining the persistence length of a polymer

	Analysing pore dimensions with HOLE2

	Volumetric analyses
	Computing mass and charge density on each axis

	Calculating the solvent density around a protein

 Quick start guide

Quick start guide

MDAnalysis version: ≥ 0.18.0

Last updated: December 2022 with MDAnalysis 2.4.0

This guide is designed as a basic introduction to MDAnalysis to get you up and running. You can see more complex tasks in our Example notebooks [https://userguide.mdanalysis.org/stable/examples/README.html]. This page outlines how to:

	load a molecular dynamics structure or trajectory

	work with AtomGroups, a central data structure in MDAnalysis

	work with a trajectory

	write out coordinates

	use the analysis algorithms in MDAnalysis

	correct and automated citation of MDAnalysis and algorithms

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, GRO, XTC

import warnings
suppress some MDAnalysis warnings about PSF files
warnings.filterwarnings('ignore')

from matplotlib import pyplot as plt

print(mda.Universe(PSF, DCD))
print("Using MDAnalysis version", mda.__version__)

%matplotlib inline

<Universe with 3341 atoms>
Using MDAnalysis version 2.6.0-dev0

This tutorial assumes that you already have MDAnalysis installed. Running the cell above should give something similar to:

<Universe with 3341 atoms>
2.6.0

If you get an error message, you need to install MDAnalysis. If your version is under 0.18.0, you need to upgrade MDAnalysis. Instructions for both are here. [https://www.mdanalysis.org/UserGuide/installation] After installing, restart this notebook.

Overview

MDAnalysis is a Python package that provides tools to access and analyse data in molecular dynamics trajectories. Several key data structures form the backbone of MDAnalysis.

	A molecular system consists of particles. A particle is represented as an Atom object, even if it is a coarse-grained bead.

	Atoms are grouped into AtomGroup [https://www.mdanalysis.org/UserGuide/atomgroup]s. The AtomGroup is probably the most important class in MDAnalysis, as almost everything can be accessed through it. See Working with atoms below.

	A Universe contains all the particles in a molecular system in an AtomGroup accessible at the .atoms attribute, and combines it with a trajectory at .trajectory.

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed. The trajectory attribute of a Universe is usually a file reader. Think of the trajectory as a function \(X(t)\) of the frame index \(t\) that only makes the data from this specific frame available. This structure is important because it allows MDAnalysis to work with trajectory files too large to fit into the computer’s memory.

MDAnalysis stores trajectories using its internal units: Å (ångström) for length and ps (picosecond) for time, regardless of the original MD data format.

Loading a structure or trajectory

Working with MDAnalysis typically starts with loading data into a Universe, the central data structure in MDAnalysis. The user guide [https://www.mdanalysis.org/UserGuide/universe] has a complete explanation of ways to create and manipulate a Universe.

The first arguments for creating a Universe are topology and trajectory files.

	A topology file is always required for loading data into a Universe. A topology file lists atoms, residues, and their connectivity. MDAnalysis accepts the PSF, PDB, CRD, and GRO formats.

	A topology file can then be followed by any number of trajectory files. A trajectory file contains a list of coordinates in the order defined in the topology. If no trajectory files are given, then only a structure is loaded. If multiple trajectory files are given, the trajectories are concatenated in the given order. MDAnalysis accepts single frames (e.g. PDB, CRD, GRO) and timeseries data (e.g. DCD, XTC, TRR, XYZ).

[2]:

psf = mda.Universe(PSF)
print(psf)
print(hasattr(psf, 'trajectory'))

<Universe with 3341 atoms>
False

As PSF files don’t contain any coordinate information and no trajectory file has been loaded, the psf universe does not contain a trajectory. If the topology file does contain coordinate information, a trajectory of 1 frame is created.

[3]:

gro = mda.Universe(GRO)
print(gro)
print(len(gro.trajectory))

<Universe with 47681 atoms>
1

For the remainder of this guide we will work with the universe u, created below. This is a simulation where the enzyme adenylate kinase samples a transition from a closed to an open conformation (Beckstein et al., 2009) [https://doi.org/10.1016/j.jmb.2009.09.009].

[4]:

u = mda.Universe(PSF, DCD)
print(u)
print(len(u.trajectory))

<Universe with 3341 atoms>
98

Note

The MDAnalysis test suite is packaged with a bunch of test files and trajectories, which are named after their file format. We are using these files throughout this guide for convenience. To analyse your own files, simply replace the PSF and DCD above with paths to your own files. For example:

structure_only = mda.Universe("my_pdb_file.pdb")

Working with groups of atoms

Most analysis requires creating and working with an AtomGroup, a collection of Atoms. For convenience, you can also work with chemically meaningful groups of Atoms such as a Residue or a Segment. These come with analogous containers to AtomGroup: ResidueGroup and SegmentGroup. For instance, the .residues attribute of a Universe returns a ResidueGroup.

[5]:

print(u.residues)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>, <Residue ILE, 3>, ..., <Residue ILE, 212>, <Residue LEU, 213>, <Residue GLY, 214>]>

Selecting atoms

The easiest way to access the particles of your Universe is with the atoms attribute:

[6]:

u.atoms

[6]:

<AtomGroup with 3341 atoms>

This returns an AtomGroup, which can be thought of as a list of Atom objects. Most analysis involves working with groups of atoms in AtomGroups. AtomGroups can easily be created by slicing another AtomGroup. For example, the below slice returns the last five atoms.

[7]:

last_five = u.atoms[-5:]
print(last_five)

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3339: C of type 32 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis supports fancy indexing: passing an array or list of indices to get a new AtomGroup with the atoms at those indices in the old AtomGroup.

[8]:

print(last_five[[0, 3, -1, 1, 3, 0]])

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis has also implemented a powerful atom selection language [https://userguide.mdanalysis.org/stable/selections.html] that is similar to existing languages in VMD [https://www.ks.uiuc.edu/Research/vmd/], PyMol [https://pymol.org/2/], and other packages. This is available with the .select_atoms() function of an AtomGroup or Universe instance:

[9]:

print(u.select_atoms('resname ASP or resname GLU'))

<AtomGroup [<Atom 318: N of type 54 of resname GLU, resid 22 and segid 4AKE>, <Atom 319: HN of type 1 of resname GLU, resid 22 and segid 4AKE>, <Atom 320: CA of type 22 of resname GLU, resid 22 and segid 4AKE>, ..., <Atom 3271: OE2 of type 72 of resname GLU, resid 210 and segid 4AKE>, <Atom 3272: C of type 20 of resname GLU, resid 210 and segid 4AKE>, <Atom 3273: O of type 70 of resname GLU, resid 210 and segid 4AKE>]>

Numerical ranges can be written as first-last or first:last where the range is inclusive. Note that in slicing, the last index is not included.

[10]:

print(u.select_atoms('resid 50-100').n_residues)
print(u.residues[50:100].n_residues)

51
50

Selections can also be combined with boolean operators, and allow wildcards.

For example, the command below selects the \(C_{\alpha}\) atoms of glutamic acid and histidine in the first 100 residues of the protein. Glutamic acid is typically named “GLU”, but histidine can be named “HIS”, “HSD”, or “HSE” depending on its protonation state and the force field used.

[11]:

u.select_atoms("(resname GLU or resname HS*) and name CA and (resid 1:100)")

[11]:

<AtomGroup with 6 atoms>

Note

An AtomGroup created from a selection is sorted and duplicate elements are removed. This is not true for an AtomGroup produced by slicing. Thus, slicing can be used when the order of atoms is crucial.

The user guide [https://userguide.mdanalysis.org/stable/atomgroup.html] has a complete rundown of creating AtomGroups through indexing, selection language, and set methods.

Getting atom information from AtomGroups

An AtomGroup can tell you information about the atoms inside it with a number of convenient attributes.

[12]:

print(u.atoms[:20].names)

['N' 'HT1' 'HT2' 'HT3' 'CA' 'HA' 'CB' 'HB1' 'HB2' 'CG' 'HG1' 'HG2' 'SD'
 'CE' 'HE1' 'HE2' 'HE3' 'C' 'O' 'N']

[13]:

print(u.atoms[50:70].masses)

[1.008 1.008 1.008 12.011 1.008 1.008 12.011 1.008 1.008 1.008
 12.011 15.999 14.007 1.008 12.011 1.008 12.011 1.008 12.011 1.008]

It also knows which residues and segments the atoms belong to. The .residues and .segments return a ResidueGroup and SegmentGroup, respectively.

[14]:

print(u.atoms[:20].residues)
print(u.atoms[-20:].segments)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>]>
<SegmentGroup [<Segment 4AKE>]>

Note that there are no duplicates in the ResidueGroup and SegmentGroup above. To get residue attributes atom-wise, you can access them directly through AtomGroup.

[15]:

print(u.atoms[:20].resnames)

['MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET'
 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'ARG']

You can group atoms together by topology attributes.

For example, to group atoms with the same residue name and atom name together:

[16]:

near_met = u.select_atoms('not resname MET and (around 2 resname MET)')
sorted(near_met.groupby(['resnames', 'names']))

[16]:

[('ALA', 'C'),
 ('ALA', 'HN'),
 ('ARG', 'N'),
 ('ASN', 'O'),
 ('ASP', 'C'),
 ('ASP', 'N'),
 ('GLN', 'C'),
 ('GLU', 'N'),
 ('ILE', 'C'),
 ('LEU', 'N'),
 ('LYS', 'N'),
 ('THR', 'N')]

A complete list of topology attributes can be found in the user guide. [https://userguide.mdanalysis.org/stable/topology_system.html]

AtomGroup positions and methods

The .positions attribute is probably the most important information you can get from an AtomGroup: a numpy.ndarray of coordinates, with the shape (n_atoms, 3).

[17]:

ca = u.select_atoms('resid 1-5 and name CA')
print(ca.positions)
print(ca.positions.shape)

[[11.664622 8.393473 -8.983231]
 [11.414839 5.4344215 -6.5134845]
 [8.959755 5.612923 -3.6132305]
 [8.290068 3.075991 -0.79665166]
 [5.011126 3.7638984 1.130355]]
(5, 3)

A number of other quantities have been defined for an AtomGroup, including:

	.center_of_mass()

	.center_of_geometry()

	.total_mass()

	.total_charge()

	.radius_of_gyration()

	.bsphere() (the bounding sphere of the selection)

See the user guide [https://userguide.mdanalysis.org/stable/topology_system.html] for a complete list and description of AtomGroup methods.

[18]:

print(ca.center_of_mass())

[9.06808195 5.25614133 -3.75524844]

Note

The .center_of_mass() function, like many of the analysis modules in MDAnalysis, relies on having accurate mass properties available. Particle masses may not always be available or accurate! [https://userguide.mdanalysis.org/stable/formats/guessing.html#masses]

Currently, MDAnalysis assigns masses to particles based on their element or ‘atom type’, which is guessed from the particle name. If MDAnalysis guesses incorrectly (e.g. a calcium atom called CA is treated as a \(C_{\alpha}\)), the mass of that atom will be inaccurate. If MDAnalysis has no idea what the particle is (e.g. coarse-grained beads), it will raise a warning, and give that particle a mass of 0.

To be certain that MDAnalysis is using the correct masses, you can set them manually.

MDAnalysis can also create topology geometries [https://userguide.mdanalysis.org/stable/topology_system.html#topology-objects] such as bonds, angles, dihedral angles, and improper angles from an AtomGroup. This AtomGroup has a special requirement: only the atoms involved in the geometry can be in the group. For example, an AtomGroup used to create a bond can only have 2 atoms in it; an AtomGroup used to create a dihedral or improper angle must have 4 atoms.

[19]:

nhh = u.atoms[:3]
print(nhh.names)

['N' 'HT1' 'HT2']

After a topology object such as an angle is created, the value of the angle (in degrees) can be calculated based on the positions of the atoms.

[20]:

angle_nhh = nhh.angle
print(f"N-H-H angle: {angle_nhh.value():.2f}")

N-H-H angle: 37.99

Note that the order of the atoms matters for angles, dihedrals, and impropers. The value returned for an angle is the angle between first and third atom, with the apex at the second. Fancy indexing is one way to get an ordered AtomGroup.

 3
 /
 /
2------1

[21]:

hnh = u.atoms[[1, 0, 2]]
print(hnh.names)

['HT1' 'N' 'HT2']

[22]:

angle_hnh = hnh.angle
print(f"N-H-H angle: {angle_hnh.value():.2f}")

N-H-H angle: 106.20

Working with trajectories

The trajectory of a Universe contains the changing coordinate information [https://userguide.mdanalysis.org/stable/trajectories/trajectories.html]. The number of frames in a trajectory is its length:

[23]:

print(len(u.trajectory))

98

The standard way to assess the information of each frame in a trajectory is to iterate over it. When the timestep changes, the universe only contains information associated with that timestep.

[24]:

for ts in u.trajectory[:20]:
 time = u.trajectory.time
 rgyr = u.atoms.radius_of_gyration()
 print(f"Frame: {ts.frame:3d}, Time: {time:4.0f} ps, Rgyr: {rgyr:.4f} A")

Frame: 0, Time: 1 ps, Rgyr: 16.6690 A
Frame: 1, Time: 2 ps, Rgyr: 16.6732 A
Frame: 2, Time: 3 ps, Rgyr: 16.7315 A
Frame: 3, Time: 4 ps, Rgyr: 16.7223 A
Frame: 4, Time: 5 ps, Rgyr: 16.7440 A
Frame: 5, Time: 6 ps, Rgyr: 16.7185 A
Frame: 6, Time: 7 ps, Rgyr: 16.7741 A
Frame: 7, Time: 8 ps, Rgyr: 16.7764 A
Frame: 8, Time: 9 ps, Rgyr: 16.7894 A
Frame: 9, Time: 10 ps, Rgyr: 16.8289 A
Frame: 10, Time: 11 ps, Rgyr: 16.8521 A
Frame: 11, Time: 12 ps, Rgyr: 16.8549 A
Frame: 12, Time: 13 ps, Rgyr: 16.8723 A
Frame: 13, Time: 14 ps, Rgyr: 16.9108 A
Frame: 14, Time: 15 ps, Rgyr: 16.9494 A
Frame: 15, Time: 16 ps, Rgyr: 16.9810 A
Frame: 16, Time: 17 ps, Rgyr: 17.0033 A
Frame: 17, Time: 18 ps, Rgyr: 17.0196 A
Frame: 18, Time: 19 ps, Rgyr: 17.0784 A
Frame: 19, Time: 20 ps, Rgyr: 17.1265 A

After iteration, the trajectory ‘resets’ back to the first frame. Please see the user guide [https://userguide.mdanalysis.org/stable/trajectories/trajectories.html] for more information.

[25]:

print(u.trajectory.frame)

0

You can set the timestep of the trajectory with the frame index:

[26]:

print(u.trajectory[10].frame)

10

This persists until the timestep is next changed.

[27]:

frame = u.trajectory.frame
time = u.trajectory.time
rgyr = u.atoms.radius_of_gyration()
print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(frame, time, rgyr))

Frame: 10, Time: 11 ps, Rgyr: 16.8521 A

Generally, trajectory analysis first collects frame-wise data in a list.

[28]:

rgyr = []
time = []
protein = u.select_atoms("protein")
for ts in u.trajectory:
 time.append(u.trajectory.time)
 rgyr.append(protein.radius_of_gyration())

This can then be converted into other data structures, such as a numpy array or a pandas DataFrame. It can be plotted (as below), or used for further analysis.

The following section requires the pandas [https://pandas.pydata.org] package (installation: conda install pandas or pip install pandas) and matplotlib [https://matplotlib.org/] (installation: conda install matplotlib or pip install matplotlib)

[29]:

import pandas as pd
rgyr_df = pd.DataFrame(rgyr, columns=['Radius of gyration (A)'], index=time)
rgyr_df.index.name = 'Time (ps)'

rgyr_df.head()

[29]:

 Constructing, modifying, and adding to a Universe

Constructing, modifying, and adding to a Universe

MDAnalysis version: ≥ 0.20.1

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Sometimes you may want to construct a Universe from scratch, or add attributes that are not read from a file. For example, you may want to group a Universe into chains, or create custom segments for protein domains.

In this tutorial we:

	create a Universe consisting of water molecules

	merge this with a protein Universe loaded from a file

	create custom segments labeling protein domains

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
import numpy as np
from IPython.core.display import Image

import warnings
suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

print("Using MDAnalysis version", mda.__version__)

Optionally, use NGLView to interactively view your trajectory
import nglview as nv
print("Using NGLView version", nv.__version__)

Using MDAnalysis version 2.6.0-dev0

Using NGLView version 3.0.3

Creating and populating a Universe with water

Creating a blank Universe

The Universe.empty() method creates a blank Universe. The natoms (int) argument must be included. Optional arguments are:

	n_residues (int): number of residues

	n_segments (int): number of segments

	atom_resindex (list): list of resindices for each atom

	residue_segindex (list): list of segindices for each residue

	trajectory (bool): whether to attach a MemoryReader trajectory (default False)

	velocities (bool): whether to include velocities in the trajectory (default False)

	forces (bool): whether to include forces in the trajectory (default False)

We will create a Universe with 1000 water molecules.

[2]:

n_residues = 1000
n_atoms = n_residues * 3

create resindex list
resindices = np.repeat(range(n_residues), 3)
assert len(resindices) == n_atoms
print("resindices:", resindices[:10])

all water molecules belong to 1 segment
segindices = [0] * n_residues
print("segindices:", segindices[:10])

resindices: [0 0 0 1 1 1 2 2 2 3]
segindices: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[3]:

create the Universe
sol = mda.Universe.empty(n_atoms,
 n_residues=n_residues,
 atom_resindex=resindices,
 residue_segindex=segindices,
 trajectory=True) # necessary for adding coordinates
sol

[3]:

<Universe with 3000 atoms>

Adding topology attributes

There isn’t much we can do with our current Universe because MDAnalysis has no information on the particle elements, positions, etc. We can add relevant information manually using TopologyAttrs.

names

[4]:

sol.add_TopologyAttr('name', ['O', 'H1', 'H2']*n_residues)
sol.atoms.names

[4]:

array(['O', 'H1', 'H2', ..., 'O', 'H1', 'H2'], dtype=object)

elements (“types”)

Elements are typically contained in the type topology attribute.

[5]:

sol.add_TopologyAttr('type', ['O', 'H', 'H']*n_residues)
sol.atoms.types

[5]:

array(['O', 'H', 'H', ..., 'O', 'H', 'H'], dtype=object)

residue names (“resnames”)

[6]:

sol.add_TopologyAttr('resname', ['SOL']*n_residues)
sol.atoms.resnames

[6]:

array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

residue counter (“resids”)

[7]:

sol.add_TopologyAttr('resid', list(range(1, n_residues+1)))
sol.atoms.resids

[7]:

array([1, 1, 1, ..., 1000, 1000, 1000])

segment/chain names (“segids”)

[8]:

sol.add_TopologyAttr('segid', ['SOL'])
sol.atoms.segids

[8]:

array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

Adding positions

Positions can simply be assigned, without adding a topology attribute.

The O-H bond length in water is around 0.96 Angstrom, and the bond angle is 104.45°. We can first obtain a set of coordinates for one molecule, and then translate it for every water molecule.

[9]:

coordinates obtained by building a molecule in the program IQMol
h2o = np.array([[0, 0, 0], # oxygen
 [0.95908, -0.02691, 0.03231], # hydrogen
 [-0.28004, -0.58767, 0.70556]]) # hydrogen

[10]:

grid_size = 10
spacing = 8

coordinates = []

translating h2o coordinates around a grid
for i in range(n_residues):
 x = spacing * (i % grid_size)
 y = spacing * ((i // grid_size) % grid_size)
 z = spacing * (i // (grid_size * grid_size))

 xyz = np.array([x, y, z])

 coordinates.extend(h2o + xyz.T)

print(coordinates[:10])

[array([0., 0., 0.]), array([0.95908, -0.02691, 0.03231]), array([-0.28004, -0.58767, 0.70556]), array([8., 0., 0.]), array([8.95908, -0.02691, 0.03231]), array([7.71996, -0.58767, 0.70556]), array([16., 0., 0.]), array([16.95908, -0.02691, 0.03231]), array([15.71996, -0.58767, 0.70556]), array([24., 0., 0.])]

[11]:

coord_array = np.array(coordinates)
assert coord_array.shape == (n_atoms, 3)
sol.atoms.positions = coord_array

We can view the atoms with NGLView, a library for visualising molecules. It guesses bonds based on distance.

[12]:

sol_view = nv.show_mdanalysis(sol)
sol_view.add_representation('ball+stick', selection='all')
sol_view.center()
sol_view

[image: sol_view]

Adding bonds

Currently, the sol universe doesn’t contain any bonds.

[13]:

assert not hasattr(sol, 'bonds')

They can be important for defining ‘fragments’, which are groups of atoms where every atom is connected by a bond to another atom in the group (i.e. what is commonly called a molecule). You can pass a list of tuples of atom indices to add bonds as a topology attribute.

[14]:

bonds = []
for o in range(0, n_atoms, 3):
 bonds.extend([(o, o+1), (o, o+2)])

bonds[:10]

[14]:

[(0, 1),
 (0, 2),
 (3, 4),
 (3, 5),
 (6, 7),
 (6, 8),
 (9, 10),
 (9, 11),
 (12, 13),
 (12, 14)]

[15]:

sol.add_TopologyAttr('bonds', bonds)
sol.bonds

[15]:

<TopologyGroup containing 2000 bonds>

The bonds associated with each atom or the bonds within an AtomGroup can be accessed with the bonds attribute:

[16]:

print(sol.atoms[0].bonds)
print(sol.atoms[-10:].bonds)

<TopologyGroup containing 2 bonds>
<TopologyGroup containing 7 bonds>

Merging with a protein

Now we can merge the water with a protein to create a combined system by using MDAnalysis.Merge to combine AtomGroup instances.

The protein is adenylate kinase (AdK), a phosphotransferase enzyme. [1]

[17]:

protein = mda.Universe(PDB_small)

[18]:

protein_view = nv.show_mdanalysis(protein)
protein_view

[image: protein_view]

We will translate the centers of both systems to the origin, so they can overlap in space.

[19]:

cog = sol.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
sol.atoms.positions -= cog
cog2 = sol.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [36.22634681 35.79514029 36.24595657]
New solvent center of geometry: [2.78155009e-07 -1.27156576e-07 3.97364299e-08]

[20]:

cog = protein.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
protein.atoms.positions -= cog
cog2 = protein.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [-3.66508082 9.60502842 14.33355791]
New solvent center of geometry: [8.30580288e-08 3.49225059e-08 2.51332265e-08]

[21]:

combined = mda.Merge(protein.atoms, sol.atoms)

[22]:

combined_view = nv.show_mdanalysis(combined)
combined_view.add_representation("ball+stick", selection="not protein")
combined_view

[image: combined_view]

Unfortunately, some water molecules overlap with the protein. We can create a new AtomGroup containing only the molecules where every atom is further away than 6 angstroms from the protein.

[23]:

no_overlap = combined.select_atoms("same resid as (not around 6 protein)")

With this AtomGroup, we can then construct a new Universe.

[24]:

u = mda.Merge(no_overlap)

[25]:

no_overlap_view = nv.show_mdanalysis(u)
no_overlap_view.add_representation("ball+stick", selection="not protein")
no_overlap_view

[image: no_overlap_view]

Adding a new segment

Often you may want to assign atoms to a segment or chain – for example, adding segment IDs to a PDB file. This requires adding a new Segment with Universe.add_Segment.

Adenylate kinase has three domains: CORE, NMP, and LID. As shown in the picture below,[1] these have the residues:

	CORE: residues 1-29, 60-121, 160-214 (gray)

	NMP: residues 30-59 (blue)

	LID: residues 122-159 (yellow)

[image: c17748516dff48f08be106d12e5533d7]

[26]:

u.segments.segids

[26]:

array(['4AKE', 'SOL'], dtype=object)

On examining the Universe, we can see that the protein and solvent are already divided into two segments: protein (‘4AKE’) and solvent (‘SOL’). We will add three more segments (CORE, NMP, and LID) and assign atoms to them.

First, add a Segment to the Universe with a segid. It will be empty:

[27]:

core_segment = u.add_Segment(segid='CORE')
core_segment.atoms

[27]:

<AtomGroup with 0 atoms>

Residues can’t be broken across segments. To put atoms in a segment, assign the segments attribute of their residues:

[28]:

core_atoms = u.select_atoms('resid 1:29 or resid 60:121 or resid 160-214')
core_atoms.residues.segments = core_segment
core_segment.atoms

[28]:

<AtomGroup with 2744 atoms>

[29]:

nmp_segment = u.add_Segment(segid='NMP')
lid_segment = u.add_Segment(segid='LID')

nmp_atoms = u.select_atoms('resid 30:59')
nmp_atoms.residues.segments = nmp_segment

lid_atoms = u.select_atoms('resid 122:159')
lid_atoms.residues.segments = lid_segment

As of MDAnalysis 2.1.0, PDBs use the chainID TopologyAttr for the chainID column. If it is missing, it uses a placeholder “X” value instead of the segid. We therefore must manually set that ourselves to visualise the protein in NGLView.

[30]:

add the topologyattr to the universe
u.add_TopologyAttr("chainID")
core_segment.atoms.chainIDs = "C"
nmp_segment.atoms.chainIDs = "N"
lid_segment.atoms.chainIDs = "L"

We can check that we have the correct domains by visualising the protein.

[31]:

domain_view = nv.show_mdanalysis(u)
domain_view.add_representation("protein", color_scheme="chainID")
domain_view

[image: no_overlap_view]

Tiling into a larger Universe

We can use MDAnalysis to tile out a smaller Universe into a bigger one, similarly to editconf in GROMACS. To start off, we need to figure out the box size. The default in MDAnalysis is a zero vector. The first three numbers represent the length of each axis, and the last three represent the alpha, beta, and gamma angles of a triclinic box.

[32]:

print(u.dimensions)

None

We know that our system is cubic in shape, so we can assume angles of 90°. The difference between the lowest and highest x-axis positions is roughly 73 Angstroms.

[33]:

max(u.atoms.positions[:, 0]) - min(u.atoms.positions[:, 0])

[33]:

73.23912

So we can set our dimensions.

[34]:

u.dimensions = [73, 73, 73, 90, 90, 90]

To tile out a Universe, we need to copy it and translate the atoms by the box dimensions. We can then merge the cells into one large Universe and assign new dimensions.

[35]:

def tile_universe(universe, n_x, n_y, n_z):
 box = universe.dimensions[:3]
 copied = []
 for x in range(n_x):
 for y in range(n_y):
 for z in range(n_z):
 u_ = universe.copy()
 move_by = box*(x, y, z)
 u_.atoms.translate(move_by)
 copied.append(u_.atoms)

 new_universe = mda.Merge(*copied)
 new_box = box*(n_x, n_y, n_z)
 new_universe.dimensions = list(new_box) + [90]*3
 return new_universe

Here is a 2 x 2 x 2 version of our original unit cell:

[36]:

tiled = tile_universe(u, 2, 2, 2)

[37]:

tiled_view = nv.show_mdanalysis(tiled)
tiled_view

[image: tiled_view]

References

[1]: Beckstein O, Denning EJ, Perilla JR, Woolf TB. Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open<–>closed transitions. J Mol Biol. 2009;394(1):160–176. doi:10.1016/j.jmb.2009.09.009 [https://dx.doi.org/10.1016%2Fj.jmb.2009.09.009]

Acknowledgments

The Universe tiling code was modified from @richardjgowers [https://github.com/richardjgowers]’s gist on the issue [https://gist.github.com/richardjgowers/b16b871259451e85af0bd2907d30de91] in 2016.

 Transformations

Transformations

	Centering a trajectory in the box

 Centering a trajectory in the box

Centering a trajectory in the box

Here we use MDAnalysis transformations to make a protein whole, center it in the box, and then wrap the water back into the box. We then look at how to do this on-the-fly.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation: * nglview [http://nglviewer.org/nglview/latest/] ([NCR18])

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

See also:

	On-the-fly transformations

	On-the-fly transformations (blog post) [https://www.mdanalysis.org/2020/03/09/on-the-fly-transformations/]

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
import numpy as np
import nglview as nv

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

For the step-by-step transformations, we need to load the trajectory into memory so that our changes to the coordinates persist. If your trajectory is too large for that, see the on-the-fly transformation section for how to do this out-of-memory.

[2]:

u = mda.Universe(TPR, XTC, in_memory=True)

Before transformation

If you have NGLView installed, you can view the trajectory as it currently is.

[3]:

view = nv.show_mdanalysis(u)
view.add_representation('point', 'resname SOL')
view.center()
view

[4]:

from nglview.contrib.movie import MovieMaker
movie = MovieMaker(
view,
step=2,
render_params={"factor": 2}, # average quality render
output='original.gif',
)
movie.make()

Otherwise, we embed a gif of it below.

[image: original]
For easier analysis and nicer visualisation, we want to center this protein in the box.

Unwrapping the protein

The first step is to “unwrap” the protein from the border of the box, to make the protein whole. MDAnalysis provides the AtomGroup.unwrap function to do this easily. Note that this function requires your universe to have bonds in it.

We loop over the trajectory to unwrap for each frame.

[5]:

protein = u.select_atoms('protein')

for ts in u.trajectory:
 protein.unwrap(compound='fragments')

As you can see, the protein is now whole, but not centered.

[6]:

unwrapped = nv.show_mdanalysis(u)
unwrapped.add_representation('point', 'resname SOL')
unwrapped.center()
unwrapped

Over the course of the trajectory it leaves the box.

[image: unwrapped]

Centering in the box

The next step is to center the protein in the box. We calculate the center-of-mass of the protein and the center of the box for each timestep. We then move all the atoms so that the protein center-of-mass is in the center of the box.

If you don’t have masses in your trajectory, try using the center_of_geometry.

[7]:

for ts in u.trajectory:
 protein_center = protein.center_of_mass(wrap=True)
 dim = ts.triclinic_dimensions
 box_center = np.sum(dim, axis=0) / 2
 u.atoms.translate(box_center - protein_center)

The protein is now in the center of the box, but the solvent is likely outside it, as we have just moved all the atoms.

[8]:

centered = nv.show_mdanalysis(u)
centered.add_representation('point', 'resname SOL')
centered.center()
centered

[image: centered]

Wrapping the solvent back into the box

Luckily, MDAnalysis also has AtomGroup.wrap to wrap molecules back into the box. Our trajectory has dimensions defined, which the function will find automatically. If your trajectory does not, or you wish to use a differently sized box, you can pass in a box with dimensions in the form [lx, ly, lz, alpha, beta, gamma].

[9]:

not_protein = u.select_atoms('not protein')

for ts in u.trajectory:
 not_protein.wrap(compound='residues')

And now it is centered!

[10]:

wrapped = nv.show_mdanalysis(u)
wrapped.add_representation('point', 'resname SOL')
wrapped.center()
wrapped

[image: wrapped]

Doing all this on-the-fly

Running all the transformations above can be difficult if your trajectory is large, or your computational resources are limited. Use on-the-fly transformations to keep your data out-of-memory.

Some common transformations are defined in MDAnalysis.transformations.

[11]:

import MDAnalysis.transformations as trans

We re-load our universe.

[12]:

u2 = mda.Universe(TPR, XTC)

protein2 = u2.select_atoms('protein')
not_protein2 = u2.select_atoms('not protein')

From version 1.0.0 onwards, the MDAnalysis.transformations module contains wrap and unwrap functions that correspond with the AtomGroup versions above. You can only use add_transformations once, so pass them all at the same time.

[13]:

transforms = [trans.unwrap(protein2),
 trans.center_in_box(protein2, wrap=True),
 trans.wrap(not_protein2)]

u2.trajectory.add_transformations(*transforms)

[14]:

otf = nv.show_mdanalysis(u2)
otf.add_representation('point', 'resname SOL')
otf.center()
otf

[image: on the fly]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter notebooks. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

 Other

Other

	Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms

 Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms

Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms

Here we use MDAnalysis to convert a ParmEd structure to an MDAnalysis Universe, select a subset of atoms, and convert it back to ParmEd to simulate with OpenMM.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis [1, 2]

	MDAnalysisTests

	ParmEd [http://parmed.github.io/ParmEd/html/index.html]

	OpenMM [http://openmm.org] [3]

[1]:

import parmed as pmd
import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PRM7_ala2, RST7_ala2

import warnings
suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files: the difference between ParmEd and MDAnalysis

Both ParmEd and MDAnalysis read a number of file formats. However, while MDAnalysis is typically used to analyse simulations, ParmEd is often used to set them up. This requires ParmEd to read topology parameter information that MDAnalysis typically ignores, such as the equilibrium length and force constants of bonds in the system. For example, the ParmEd structure below.

[2]:

pprm = pmd.load_file(PRM7_ala2, RST7_ala2)
pprm

[2]:

<AmberParm 3026 atoms; 1003 residues; 3025 bonds; PBC (orthogonal); parameterized>

[3]:

pprm.bonds[0]

[3]:

<Bond <Atom C [10]; In ALA 0>--<Atom O [11]; In ALA 0>; type=<BondType; k=570.000, req=1.229>>

When MDAnalysis reads these files in, it does not include that information.

[4]:

mprm = mda.Universe(PRM7_ala2, RST7_ala2, format='RESTRT')
mprm

[4]:

<Universe with 3026 atoms>

The bond type simply shows the atom types involved in the connection.

[5]:

mprm.atoms.bonds[0].type

[5]:

('N3', 'H')

If you then convert this Universe to ParmEd, you can see that the resulting Structure is not parametrized.

[6]:

mprm_converted = mprm.atoms.convert_to('PARMED')
mprm_converted

[6]:

<Structure 3026 atoms; 1003 residues; 3025 bonds; parameterized>

While the bonds are present, there is no type information associated.

[7]:

mprm_converted.bonds[0]

[7]:

<Bond <Atom N [0]; In ALA 0>--<Atom H1 [1]; In ALA 0>; type=None>

Therefore, if you wish to use ParmEd functionality that requires parametrization on a MDAnalysis Universe, you need to create that Universe from a ParmEd structure in order to convert it back to something useable in ParmEd.

[8]:

mprm_from_parmed = mda.Universe(pprm)
mprm_from_parmed

[8]:

<Universe with 3026 atoms>

Now the bond type is actually a ParmEd Bond object.

[9]:

mprm_from_parmed.bonds[0].type

[9]:

<Bond <Atom N [0]; In ALA 0>--<Atom H1 [1]; In ALA 0>; type=<BondType; k=434.000, req=1.010>>

Using MDAnalysis to select atoms

One reason we might want to convert a ParmEd structure into MDAnalysis is to use its sophisticated atom selection syntax [https://www.mdanalysis.org/UserGuide/selections.html]. While ParmEd has its own ways to select atoms [https://parmed.github.io/ParmEd/html/structure.html#structure-manipulation-slicing-combining-replicating-and-splitting], MDAnalysis allows you to select atoms based on geometric distance.

[10]:

water = mprm_from_parmed.select_atoms('around 5 protein').residues.atoms
protein_shell = mprm_from_parmed.select_atoms('protein') + water
prm_protein_shell = protein_shell.convert_to('PARMED')

[11]:

prm_protein_shell

[11]:

<Structure 155 atoms; 46 residues; 154 bonds; PBC (orthogonal); parameterized>

Using ParmEd and OpenMM to create a simulation system

[12]:

import sys
import openmm as mm
import openmm.app as app
from parmed import unit as u
from parmed.openmm import StateDataReporter, MdcrdReporter

You can create an OpenMM simulation system directly from a ParmEd structure, providing that it is parametrized.

[13]:

system = prm_protein_shell.createSystem(nonbondedMethod=app.NoCutoff,
 constraints=app.HBonds,
 implicitSolvent=app.GBn2)

Here we set the integrator to do Langevin dynamics.

[14]:

integrator = mm.LangevinIntegrator(
 300*u.kelvin, # Temperature of heat bath
 1.0/u.picoseconds, # Friction coefficient
 2.0*u.femtoseconds, # Time step
)

We create the Simulation object and set particle positions.

[15]:

sim = app.Simulation(prm_protein_shell.topology, system, integrator)
sim.context.setPositions(prm_protein_shell.positions)

We now minimise the energy.

[16]:

sim.minimizeEnergy(maxIterations=500)

The reporter below reports energies and coordinates every 100 steps to stdout, but every 10 steps to the ala2_shell.nc file.

[17]:

sim.reporters.append(
 StateDataReporter(sys.stdout, 100, step=True, potentialEnergy=True,
 kineticEnergy=True, temperature=True, volume=True,
 density=True)
)
sim.reporters.append(MdcrdReporter('ala2_shell.trj', 10, crds=True))

We can run dynamics for 500 steps (1 picosecond).

[18]:

sim.step(500)

#"Step","Time (ps)","Potential Energy (kilocalorie/mole)","Kinetic Energy (kilocalorie/mole)","Total Energy (kilocalorie/mole)","Temperature (K)","Box Volume (angstrom**3)","Density (gram/(item*milliliter))"
100,0.20000000000000015,-623.6779995219885,20.140631869613383,-603.5373676523751,63.74314071570579,45325.8064191062,0.034909350700361955
200,0.4000000000000003,-614.1849904397706,38.40737137186695,-575.7776190679035,121.55559436896063,45325.8064191062,0.034909350700361955
300,0.6000000000000004,-606.5526783580306,48.61919832973248,-557.933480028298,153.87503334950912,45325.8064191062,0.034909350700361955
400,0.8000000000000006,-600.0374380078872,57.988937528818184,-542.0485004790689,183.52934648642113,45325.8064191062,0.034909350700361955
500,1.0000000000000007,-603.2854886173518,79.46589388029852,-523.8195947370533,251.50182419815255,45325.8064191062,0.034909350700361955

If we write a topology file out from our former protein_shell atomgroup, we can load the trajectory in for further analysis.

[19]:

protein_shell.write('ala2_shell.pdb')

[20]:

u = mda.Universe('ala2_shell.pdb', 'ala2_shell.trj')

[21]:

u.trajectory

[21]:

<TRJReader ala2_shell.trj with 50 frames of 155 atoms>

References

[1] R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations [http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html]. In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science Conference, pages 98-105, Austin, TX, 2016. SciPy, doi:
10.25080/majora-629e541a-00e [https://doi.org/10.25080/majora-629e541a-00e].

[2] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 32 (2011), 2319-2327, doi:10.1002/jcc.21787 [https://dx.doi.org/10.1002/jcc.21787]. PMCID:PMC3144279 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144279/]

[3] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, Vijay S. Pande. OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol. 13:e1005659, 2017.

[4] Hai Nguyen, David A Case, Alexander S Rose. NGLview - Interactive molecular graphics for Jupyter notebooks. Bioinformatics. 34 (2018), 1241–1242, doi:10.1093/bioinformatics/btx789 [https://doi.org/10.1093/bioinformatics/btx789]

 Alignments and RMS fitting

Alignments and RMS fitting

The MDAnalysis.analysis.align [https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/analysis/align.html#module-MDAnalysis.analysis.align] and MDAnalysis.analysis.rms [https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/analysis/rms.html#module-MDAnalysis.analysis.rms]
modules contain the functions used for aligning structures,
aligning trajectories, and calculating root mean squared quantities.

Demonstrations of alignment are in align_structure,
align_trajectory_first, and align_trajectory. Another example of
generating an average structure from an alignment is demonstrated in
rmsf. Typically, trajectories need to be aligned for RMSD and
RMSF values to make sense.

Note

These modules use the fast QCP algorithm to calculate the root mean
square distance (RMSD) between two coordinate sets [The05] and
the rotation matrix R that minimizes the RMSD [LAT09]. Please
cite these references when using these modules.

	Aligning a structure to another

	Aligning a trajectory to a reference

	Aligning a trajectory to itself

	Calculating the root mean square deviation of atomic structures

	Calculating the pairwise RMSD of a trajectory

	Calculating the root mean square fluctuation over a trajectory

 Aligning a structure to another

Aligning a structure to another

We use align.alignto to align a structure to another.

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for molecular visualisation:

	nglview [http://nglviewer.org/nglview/latest] ([NCR18])

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

See also

	Aligning a trajectory to a frame from another

	Aligning a trajectory to a frame from itself

	RMSD

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import CRD, PSF, DCD, DCD2
import nglview as nv

import warnings
suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]:

adk_open = mda.Universe(CRD, DCD2)
adk_closed = mda.Universe(PSF, DCD)

[3]:

adk_open_view = nv.show_mdanalysis(adk_open)
adk_open_view

[image: adk_open_view]

[4]:

adk_closed_view = nv.show_mdanalysis(adk_closed)
adk_closed_view

[image: adk_closed_view]

Currently, the proteins are not aligned to each other. The difference becomes even more obvious when the closed conformation is compared to the open. Below, we set adk_open to the last frame and see the relative positions of each protein in a merged Universe.

[5]:

adk_open.trajectory[-1] # last frame
merged = mda.Merge(adk_open.atoms, adk_closed.atoms)

[6]:

merged_view = nv.show_mdanalysis(merged)
merged_view

[image: merged_view]

Aligning a structure with align.alignto

alignto (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/align.html#MDAnalysis.analysis.align.alignto]) aligns the mobile AtomGroup to the target AtomGroup by minimising the root mean square deviation (RMSD) between particle positions (please see the linked notebook for an explanation of RMSD). It returns (old_rmsd, new_rmsd). By default (match_atoms=True), it will attempt to match the atoms between the mobile and reference structures by
mass.

[7]:

rmsds = align.alignto(adk_open, # mobile
 adk_closed, # reference
 select='name CA', # selection to operate on
 match_atoms=True) # whether to match atoms
print(rmsds)

(21.712154435976014, 6.817293751703919)

[8]:

aligned_view = nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))
aligned_view

[image: aligned_view]

However, you may want to align to a structure that where there is not a clear match in particle mass. For example, you could be aligning the alpha-carbons of an atomistic protein to the backbone beads of a coarse-grained structure. Below, we use the somewhat contrived example of aligning 214 alpha-carbons to the first 214 atoms of the reference structure. In this case, we need to switch match_atoms=False or the alignment will error.

[9]:

rmsds = align.alignto(adk_open.select_atoms('name CA'), # mobile
 adk_closed.atoms[:214], # reference
 select='all', # selection to operate on
 match_atoms=False) # whether to match atoms
print(rmsds)

(18.991465038265208, 16.603704620787127)

[10]:

shifted_aligned_view = nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))
shifted_aligned_view

[image: shifted_aligned_view]

When we align structures, positions are set temporarily. If we flip to the first frame of adk_open and back to the last frame, we can see that it has returned to its original location.

[11]:

adk_open.trajectory[0] # set to first frame
adk_open.trajectory[-1] # set to last frame

[11]:

< Timestep 101 >

[12]:

reset_view = nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))
reset_view

[image: reset_view]

You can save the aligned positions by writing them out to a PDB file and creating a new Universe.

[13]:

align.alignto(adk_open, adk_closed, select='name CA')
adk_open.atoms.write('aligned.pdb')

[14]:

from_file_view = nv.show_mdanalysis(mda.Universe('aligned.pdb'))
from_file_view

[image: from_file_view]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[5] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter notebooks. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[6] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

 Aligning a trajectory to a reference

Aligning a trajectory to a reference

We use align.AlignTraj to align a trajectory to a frame in a reference trajectory and write it to a file.

Last updated: December 2022

Minimum version of MDAnalysis: 2.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for molecular visualisation:

	nglview [http://nglviewer.org/nglview/latest] ([NCR18])

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

See also

	Aligning a trajectory to a frame from itself

	Aligning a structure to another

	RMSD

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import CRD, PSF, DCD, DCD2
import nglview as nv

import warnings
suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]:

adk_open = mda.Universe(CRD, DCD2)
adk_closed = mda.Universe(PSF, DCD)

Currently, the proteins are not aligned to each other. The difference becomes obvious when the closed conformation is compared to the open. Below, we set adk_open to the last frame and see the relative positions of each protein in a merged Universe.

[3]:

adk_open.trajectory[-1] # last frame
merged = mda.Merge(adk_open.atoms, adk_closed.atoms)

[4]:

merged_view = nv.show_mdanalysis(merged)
merged_view

[image: merged_view]

Aligning a trajectory with AlignTraj

While align.alignto [https://docs.mdanalysis.org/stable/documentation_pages/analysis/align.html#MDAnalysis.analysis.align.alignto] aligns structures, or a frame of a trajectory, align.AlignTraj (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/align.html#MDAnalysis.analysis.align.AlignTraj]) efficiently aligns an entire trajectory to a reference. Unlike most other analysis modules, AlignTraj allows you to write the output of the analysis to a file. This
is because when Universes are created by loading from a file, changes to frame-by-frame (dynamic) information do not persist [https://userguide.mdanalysis.org/stable/trajectories/trajectories.html] when the frame is changed. If the trajectory is not written to a file, or pulled into memory (below), AlignTraj will have no effect.

[5]:

align.AlignTraj(adk_closed, # trajectory to align
 adk_open, # reference
 select='name CA', # selection of atoms to align
 filename='aligned.dcd', # file to write the trajectory to
 match_atoms=True, # whether to match atoms based on mass
).run()
merge adk_closed and adk_open into the same universe
merged1 = mda.Merge(adk_closed.atoms, adk_open.atoms)

[6]:

merged1_view = nv.show_mdanalysis(merged1)
merged1_view

[image: merged1_view]

As you can see, the adk_closed and adk_open trajectories still look the same. However, when we load our aligned trajectory from aligned.dcd, we can see them superposed:

[7]:

aligned = mda.Universe(PSF, 'aligned.dcd')
aligned.segments.segids = ['Aligned'] # rename our segments
adk_open.segments.segids = ['Open'] # so they're coloured differently
merged2 = mda.Merge(aligned.atoms, adk_open.atoms)

[8]:

merged2_view = nv.show_mdanalysis(merged2)
merged2_view

[image: merged2_view]

If you don’t want to write a file, you can also choose to load the entire trajectory into memory. (This is not always feasible depending on how large your trajectory is, and how much memory your device has, in which case it is much more efficient to write an aligned trajectory to a file as above). You can accomplish this in one of two ways:

	Load the trajectory into memory in the first place

adk_closed = mda.Universe(PSF, DCD, in_memory=True)

	Select in_memory=True during AlignTraj (below)

[9]:

align.AlignTraj(adk_closed, # trajectory to align
 adk_open, # reference
 select='name CA', # selection of atoms to align
 filename='aligned.dcd', # file to write the trajectory to
 match_atoms=True, # whether to match atoms based on mass
 in_memory=True
).run()
merge adk_closed and adk_open into the same universe
merged3 = mda.Merge(adk_closed.atoms, adk_open.atoms)

Copying coordinates into a new Universe

MDAnalysis.Merge does not automatically load coordinates for a trajectory. We can do this ourselves. Below, we copy the coordinates of the 98 frames in the aligned universe.

[10]:

from MDAnalysis.analysis.base import AnalysisFromFunction
import numpy as np
from MDAnalysis.coordinates.memory import MemoryReader

def copy_coords(ag):
 return ag.positions.copy()

aligned_coords = AnalysisFromFunction(copy_coords,
 aligned.atoms).run().results

print(aligned_coords['timeseries'].shape)

(98, 3341, 3)

To contrast, we will keep the open conformation static.

[11]:

adk_coords = adk_open.atoms.positions.copy()
adk_coords.shape

[11]:

(3341, 3)

Because there are 98 frames of the aligned Universe, we copy the coordinates of the adk_open positions and stack them.

[12]:

adk_traj_coords = np.stack([adk_coords] * 98)
adk_traj_coords.shape

[12]:

(98, 3341, 3)

We join aligned_coords and adk_traj_coords on the second axis with np.hstack and load the coordinates into memory into the merged2 Universe.

[13]:

merged_coords = np.hstack([aligned_coords['timeseries'],
 adk_traj_coords])
merged2.load_new(merged_coords, format=MemoryReader)

[13]:

<Universe with 6682 atoms>

[14]:

m2_view = nv.show_mdanalysis(merged2)
m2_view

Online notebooks do not show the molecule trajectory, but here you can use nglview.contrib.movie.MovieMaker to make a gif of the trajectory. This requires you to install moviepy.

[15]:

from nglview.contrib.movie import MovieMaker
movie = MovieMaker(
m2_view,
step=4, # only render every 4th frame
output='merged.gif',
render_params={"factor": 3}, # set to 4 for higher quality
)
movie.make()

[image: merged]

Writing trajectories to a file

Finally, we can also save this new trajectory to a file.

[16]:

with mda.Writer('aligned.xyz', merged2.atoms.n_atoms) as w:
 for ts in merged2.trajectory:
 w.write(merged2.atoms)

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[5] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter notebooks. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[6] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

 Aligning a trajectory to itself

Aligning a trajectory to itself

We use align.AlignTraj to align a trajectory to a reference frame and write it to a file.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

See also

	Aligning a trajectory to a frame from another

	Aligning a structure to another

	RMSD

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.analysis import align, rms
from MDAnalysis.tests.datafiles import PSF, DCD

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory samples a transition from a closed to an open conformation.

[2]:

mobile = mda.Universe(PSF, DCD)
ref = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Aligning a trajectory to the first frame

While align.alignto [https://docs.mdanalysis.org/stable/documentation_pages/analysis/align.html#MDAnalysis.analysis.align.alignto] aligns structures, or a frame of a trajectory, align.AlignTraj (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/align.html#MDAnalysis.analysis.align.AlignTraj]) efficiently aligns an entire trajectory to a reference.

We first check the root mean square deviation (RMSD) values of our unaligned trajectory, so we can compare results (please see the linked notebook for an explanation of RMSD). The code below sets the mobile trajectory to the last frame by indexing the last timestep, ref to the first frame by indexing the first timestep, and computes the root mean squared deviation between the alpha-carbon positions.

[3]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
unaligned_rmsd = rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)
print(f"Unaligned RMSD: {unaligned_rmsd:.2f}")

Unaligned RMSD: 6.84

Now we can align the trajectory. We have already set ref to the first frame. In the cell below, we load the positions of the trajectory into memory so we can modify the trajectory in Python.

[4]:

aligner = align.AlignTraj(mobile, ref, select='name CA', in_memory=True).run()

If you don’t have enough memory to do that, write the trajectory out to a file and reload it into MDAnalysis (uncomment the cell below). Otherwise, you don’t have to run it.

[5]:

aligner = align.AlignTraj(mobile, ref, select='backbone',
filename='aligned_to_first_frame.dcd').run()
mobile = mda.Universe(PSF, 'aligned_to_first_frame.dcd')

Now we can see that the RMSD has reduced (minorly).

[6]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
aligned_rmsd = rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)

print(f"Aligned RMSD: {aligned_rmsd:.2f}")

Aligned RMSD: 6.81

Aligning a trajectory to the third frame

We can align the trajectory to any frame: for example, the third one. The procedure is much the same, except that we must set ref to the third frame by indexing the third timestep.

[7]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

aligned_rmsd_3 = rms.rmsd(mobile.atoms.positions, ref.atoms.positions, superposition=False)

print(f"Aligned RMSD: {aligned_rmsd_3:.2f}")

Aligned RMSD: 6.73

[8]:

aligner = align.AlignTraj(mobile, ref, select='all', in_memory=True).run()

[9]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

aligned_rmsd_3 = rms.rmsd(mobile.atoms.positions, ref.atoms.positions, superposition=False)
print(f"Aligned RMSD, all-atom: {aligned_rmsd_3:.2f}")

Aligned RMSD, all-atom: 6.72

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[5] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

 Calculating the root mean square deviation of atomic structures

Calculating the root mean square deviation of atomic structures

We calculate the RMSD of domains in adenylate kinase as it transitions from an open to closed structure, and look at calculating weighted RMSDs.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	pandas [https://pandas.pydata.org]

See also

	Pairwise (2D) RMSD

	RMSF

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite ([The05]) when using the MDAnalysis.analysis.align module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, CRD
from MDAnalysis.analysis import rms

import pandas as pd
the next line is necessary to display plots in Jupyter
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation. AdK has three domains:

	CORE

	LID: an ATP-binding domain

	NMP: an AMP-binding domain

The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed conformations. One way to quantify this movement is by calculating the root mean square deviation (RMSD) of atomic positions.

[2]:

u = mda.Universe(PSF, DCD) # closed AdK (PDB ID: 1AKE)
ref = mda.Universe(PSF, CRD) # open AdK (PDB ID: 4AKE)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Background

The root mean square deviation (RMSD) of particle coordinates is one measure of distance, or dissimilarity, between molecular conformations. Each structure should have matching elementwise atoms \(i\) in the same order, as the distance between them is calculated and summed for the final result. It is calculated between coordinate arrays \(\mathbf{x}\) and \(\mathbf{x}^{\text{ref}}\) according to the equation below:

\[\text{RMSD}(\mathbf{x}, \mathbf{x}^{\text{ref}}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n}{|\mathbf{x}_i-\mathbf{x}_i^{\text{ref}}|^2}}\]

As molecules can move around, the structure \(\mathbf{x}\) is usually translated by a vector \(\mathbf{t}\) and rotated by a matrix \(\mathsf{R}\) to align with the reference \(\mathbf{x}^{\text{ref}}\) such that the RMSD is minimised. The RMSD after this optimal superposition can be expressed as follows:

\[\text{RMSD}(\mathbf{x}, \mathbf{x}^{\text{ref}}) = \min_{\mathsf{R}, \mathbf{t}} %
 \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[%
 (\mathsf{R}\cdot\mathbf{x}_{i}(t) + \mathbf{t}) - \mathbf{x}_{i}^{\text{ref}} \right]^{2}}\]

The RMSD between one reference state and a trajectory of structures is often calculated as a way to measure the dissimilarity of the trajectory conformational ensemble to the reference. This reference is frequently the first frame of the trajectory (the default in MDAnalysis), in which case it can provide insight into the overall movement from the initial starting point. While stable RMSD values from a reference structure are frequently used as a measure of conformational convergence, this
metric suffers from the problem of degeneracy: many different structures can have the same RMSD from the same reference. For an alternative measure, you could use pairwise or 2D RMSD.

Typically not all coordinates in a structures are included in an RMSD analysis. With proteins, the fluctuation of the residue side-chains is not representative of overall conformational change. Therefore when RMSD analyses are performed to investigate large-scale movements in proteins, the atoms are usually restricted only to the backbone atoms (forming the amide-bond chain) or the alpha-carbon atoms.

MDAnalysis provides functions and classes to calculate the RMSD between coordinate arrays, and Universes or AtomGroups.

The contribution of each particle \(i\) to the final RMSD value can also be weighted by \(w_i\):

\[\text{RMSD}(\mathbf{x}, \mathbf{x}^\text{ref}) = \sqrt{\frac{\sum_{i=1}^{n}{w_i|\mathbf{x}_i-\mathbf{x}_i^{\text{ref}}|^2}}{\sum_{i-1}^n w_i}}\]

RMSD analyses are frequently weighted by mass. The MDAnalysis RMSD class (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/rms.html#MDAnalysis.analysis.rms.RMSD]) allows you to both select mass-weighting with weights='mass' or weights_groupselections='mass', or to pass custom arrays into either keyword.

RMSD between two sets of coordinates

The MDAnalysis.analysis.rms.rmsd function returns the root mean square deviation (in Angstrom) between two sets of coordinates. Here, we calculate the RMSD between the backbone atoms of the open and closed conformations of AdK. Only considering the backbone atoms is often more helpful than calculating the RMSD for all the atoms, as movement in amino acid side-chains isn’t indicative of overall conformational change.

[3]:

rms.rmsd(u.select_atoms('backbone').positions, # coordinates to align
 ref.select_atoms('backbone').positions, # reference coordinates
 center=True, # subtract the center of geometry
 superposition=True) # superimpose coordinates

[3]:

6.823686867261616

RMSD of a Universe with multiple selections

It is more efficient to use the MDAnalysis.analysis.rms.RMSD class to calculate the RMSD of an entire trajectory to a single reference point, than to use the the MDAnalysis.analysis.rms.rmsd function.

The rms.RMSD class first performs a rotational and translational alignment of the target trajectory to the reference universe at ref_frame, using the atoms in select to determine the transformation. The RMSD of the select selection is calculated. Then, without further alignment, the RMSD of each group in groupselections is calculated.

[4]:

CORE = 'backbone and (resid 1-29 or resid 60-121 or resid 160-214)'
LID = 'backbone and resid 122-159'
NMP = 'backbone and resid 30-59'

[5]:

R = rms.RMSD(u, # universe to align
 u, # reference universe or atomgroup
 select='backbone', # group to superimpose and calculate RMSD
 groupselections=[CORE, LID, NMP], # groups for RMSD
 ref_frame=0) # frame index of the reference
R.run()

[5]:

<MDAnalysis.analysis.rms.RMSD at 0x7f2e830164f0>

The data is saved in R.rmsd as an array.

[6]:

R.results.rmsd.shape

[6]:

(98, 6)

R.rmsd has a row for each timestep. The first two columns of each row are the frame index of the time step, and the time (which is guessed in trajectory formats without timesteps). The third column is RMSD of select. The last few columns are the RMSD of the groups in groupselections.

Plotting the data

We can easily plot this data using the common data analysis package pandas [https://pandas.pydata.org]. We turn the R.rmsd array into a DataFrame [https://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html#dataframe] and label each column below.

[7]:

df = pd.DataFrame(R.results.rmsd,
 columns=['Frame', 'Time (ns)',
 'Backbone', 'CORE',
 'LID', 'NMP'])

df

[7]:

 Calculating the pairwise RMSD of a trajectory

Calculating the pairwise RMSD of a trajectory

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	matplotlib

See also

	1D RMSD

	RMSF

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite ([The05]) when using the MDAnalysis.analysis.align module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, CRD, DCD2
from MDAnalysis.analysis import diffusionmap, align, rms
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]:

adk_open = mda.Universe(CRD, DCD2)
adk_closed = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Background

While 1-dimensional RMSD is a quick way to estimate how much a structure changes over time, it can be a misleading measure. It is easy to think that two structures with the same RMSD from a reference frame are also similar; but in fact, they can be very different. Instead, calculating the RMSD of each frame in the trajectory to all other frames in the other trajectory can contain much more information. This measure is often called the pairwise, all-to-all, or 2D RMSD.

The other, or reference, trajectory in pairwise RMSD can either be the first trajectory, or another one. If the pairwise RMSD of a trajectory is calculated to itself, it can be used to gain insight into the conformational convergence of the simulation. The diagonal of the plot will be zero in this case (as this represents the RMSD of a structure to itself). Blocks of low RMSD values along the diagonal indicate similar structures, suggesting the occupation of a given state. Blocks of low RMSD
values off the diagonal indicate that the trajectory is revisiting an earlier state. Please see the living guide Best Practices for Quantification of Uncertainty and Sampling Quality in Molecular Simulations by Grossfield et al. [https://github.com/dmzuckerman/Sampling-Uncertainty] for more on using 2D RMSD as a measure of convergence. MDAnalysis provides a DistanceMatrix class for easy calculation of the pairwise RMSD of a trajectory to
itself.

When the other trajectory in pairwise RMSD is a different trajectory, the pairwise RMSD can be used to compare the similarity of the two conformational ensembles. There is no requirement that the two trajectories be the same length. In this case, the diagonal is no longer necessarily zero. Blocks of low RMSD values anywhere indicate that the two trajectories are sampling similar states. Pairwise RMSDs with different trajectories must be manually calculated in
MDAnalysis.

Pairwise RMSD of a trajectory to itself

In order to calculate the pairwise RMSD of a trajectory to itself, you should begin by aligning the trajectory in order to minimise the resulting RMSD. You may not have enough memory to do this in_memory, in which case you can write out the aligned trajectory to a file (please see the aligning tutorials for more).

[3]:

aligner = align.AlignTraj(adk_open, adk_open, select='name CA',
 in_memory=True).run()

We can then calculate a pairwise RMSD matrix with the diffusionmap.DistanceMatrix [https://docs.mdanalysis.org/stable/documentation_pages/analysis/diffusionmap.html#MDAnalysis.analysis.diffusionmap.DistanceMatrix] class, by using the default the rms.rmsd [https://docs.mdanalysis.org/stable/documentation_pages/analysis/rms.html#MDAnalysis.analysis.rms.rmsd] metric.

[4]:

matrix = diffusionmap.DistanceMatrix(adk_open, select='name CA').run()

The results array is in results.matrix.dist_matrix as a square array with the shape (#n_frames, #n_frame).

[5]:

matrix.results.dist_matrix.shape

[5]:

(102, 102)

We can use the common plotting package matplotlib [https://matplotlib.org/3.1.1/gallery/index.html] to create a heatmap from this array. For other ways to plot heat maps, you can look at the seaborn [https://seaborn.pydata.org/generated/seaborn.heatmap.html], plotly [https://plotly.com/python/heatmaps/] (for interactive images), or holoviews [http://holoviews.org/reference/elements/bokeh/HeatMap.html] (also interactive) packages.

[6]:

plt.imshow(matrix.results.dist_matrix, cmap='viridis')
plt.xlabel('Frame')
plt.ylabel('Frame')
plt.colorbar(label=r'RMSD (\AA)')

[6]:

<matplotlib.colorbar.Colorbar at 0x7fd0e5ddcc40>

[image: ../../../_images/examples_analysis_alignment_and_rms_pairwise_rmsd_14_1.png]

Pairwise RMSD between two trajectories

Calculating the 2D RMSD between two trajectories is a bit more finicky; DistanceMatrix can only calculate the RMSD of a trajectory to itself. Instead, we do it the long way by simply calculating the RMSD of each frame in the second trajectory, to each frame in the first trajectory.

First we set up a 2D numpy array a shape corresponding to the length of each of our trajectories to store our results. To start off, it is populated with zeros.

[7]:

prmsd = np.zeros((len(adk_open.trajectory), # y-axis
 len(adk_closed.trajectory))) # x-axis

Then we iterate through each frame of the adk_open trajectory (our y-axis), and calculate the RMSD of adk_closed to each frame, storing it in the prmsd array.

[8]:

for i, frame_open in enumerate(adk_open.trajectory):
 r = rms.RMSD(adk_closed, adk_open, select='name CA',
 ref_frame=i).run()
 prmsd[i] = r.results.rmsd[:, -1] # select 3rd column with RMSD values

We plot it below. As you can see, there is no longer a line of zero values across the diagonal. Here, the frames of adk_closed and adk_open are similar but not identical.

[9]:

plt.imshow(prmsd, cmap='viridis')
plt.xlabel('Frame (adk_closed)')
plt.ylabel('Frame (adk_open)')
plt.colorbar(label=r'RMSD (\AA)')

[9]:

<matplotlib.colorbar.Colorbar at 0x7fd0e5c7a850>

[image: ../../../_images/examples_analysis_alignment_and_rms_pairwise_rmsd_21_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

 Calculating the root mean square fluctuation over a trajectory

Calculating the root mean square fluctuation over a trajectory

We calculate the RMSF of the alpha-carbons in adenylate kinase (AdK) as it transitions from an open to closed structure, with reference to the average conformation of AdK.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisData [https://www.mdanalysis.org/MDAnalysisData/]

	matplotlib [https://matplotlib.org/]

Optional packages for visualisation: * nglview [http://nglviewer.org/nglview/latest/]

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

See also

	RMSD

	Pairwise (2D) RMSD

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align and MDAnalysis.analysis.rms modules in published work.

[1]:

import MDAnalysis as mda
from MDAnalysisData import datasets
from MDAnalysis.analysis import rms, align
import nglview as nv

import warnings
suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here are an equilibrium trajectory of adenylate kinase (AdK), a phosophotransferase enzyme. ([SB17]) AdK has three domains:

	CORE

	LID: an ATP-binding domain

	NMP: an AMP-binding domain

The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed conformations. We therefore might wonder whether the LID and NMP residues are more mobile than the CORE residues. One way to quantify this flexibility is by calculating the root mean square fluctuation (RMSF) of atomic positions.

Note: downloading these datasets from MDAnalysisData may take some time.

[2]:

adk = datasets.fetch_adk_equilibrium()

[3]:

u = mda.Universe(adk.topology, adk.trajectory)

Background

The root-mean-square-fluctuation (RMSF) of a structure is the time average of the RMSD. It is calculated according to the below equation, where \(\mathbf{x}_i\) is the coordinates of particle \(i\), and \(\langle\mathbf{x}_i\rangle\) is the ensemble average position of \(i\).

\[\rho_i = \sqrt{\left\langle (\mathbf{x}_i - \langle\mathbf{x}_i\rangle)^2 \right\rangle}\]

Where the RMSD quantifies how much a structure diverges from a reference over time, the RSMF can reveal which areas of the system are the most mobile. While RMSD is frequently calculated to an initial state, the RMSF should be calculated to an average structure of the simulation. An area of the structure with high RMSF values frequently diverges from the average, indicating high mobility. When RMSF analysis is carried out on proteins, it is typically restricted to backbone or alpha-carbon atoms;
these are more characteristic of conformational changes than the more flexible side-chains.

Creating an average structure

We can generate an average structure to align to with the align.AverageStructure class. Here we first align to the first frame (ref_frame=0), and then average the coordinates.

[4]:

average = align.AverageStructure(u, u, select='protein and name CA',
 ref_frame=0).run()
ref = average.results.universe

Aligning the trajectory to a reference

rms.RMSF does not allow on-the-fly alignment to a reference, and presumes that you have already aligned the trajectory. Therefore we need to first align our trajectory to the average conformation.

[5]:

aligner = align.AlignTraj(u, ref,
 select='protein and name CA',
 in_memory=True).run()

You may not have enough memory to load the trajectory into memory. In that case, save this aligned trajectory to a file and re-load it into MDAnalysis by uncommenting the code below.

[6]:

aligner = align.AlignTraj(u, ref,
select='protein and name CA',
filename='aligned_traj.dcd',
in_memory=False).run()
u = mda.Universe(PSF, 'aligned_traj.dcd')

Calculating RMSF

The trajectory is now fitted to the reference, and the RMSF (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/rms.html#MDAnalysis.analysis.rms.RMSF]) can be calculated.

Note

MDAnalysis implements an algorithm that computes sums of squares and avoids underflows or overflows. Please cite ([Wel62]) when using the MDAnalysis.analysis.rms.RMSF class in published work.

[7]:

c_alphas = u.select_atoms('protein and name CA')
R = rms.RMSF(c_alphas).run()

Plotting RMSF

We can now plot the RMSF using the common plotting package matplotlib [https://matplotlib.org/3.1.1/gallery/index.html].

[8]:

import matplotlib.pyplot as plt
%matplotlib inline

As we can see, the LID and NMP residues indeed move much more compared to the rest of the enzyme.

[9]:

plt.plot(c_alphas.resids, R.results.rmsf)
plt.xlabel('Residue number')
plt.ylabel('RMSF (\AA)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[9]:

<matplotlib.legend.Legend at 0x13a476d30>

[image: ../../../_images/examples_analysis_alignment_and_rms_rmsf_21_1.png]

Visualising RMSF as B-factors

Colouring a protein by RMSF allows you to visually identify regions of high fluctuation. This is commonly done by setting temperature factor (also known as b-factor) values, writing out to a format with B-factor specification (e.g. PDB), and visualising the file in a program such as VMD [https://www.ks.uiuc.edu/Research/vmd/] or nglview.

MDAnalysis uses the tempfactor topology attribute for this information. Below, we iterate through each residue of the protein and set the tempfactor attribute for every atom in the residue to the alpha-carbon RMSF value; this is necessary so every atom in the residue is coloured with the alpha-carbon RMSF.

[10]:

u.add_TopologyAttr('tempfactors') # add empty attribute for all atoms
protein = u.select_atoms('protein') # select protein atoms
for residue, r_value in zip(protein.residues, R.results.rmsf):
 residue.atoms.tempfactors = r_value

Below we visualise these values with a rainbow colour scheme. Purple values correspond to low RMSF values, whereas red values correspond to high RMSFs.

[11]:

view = nv.show_mdanalysis(u)
view.update_representation(color_scheme='bfactor')
view

[12]:

from nglview.contrib.movie import MovieMaker
movie = MovieMaker(
view,
step=100, # keep every 100th frame
output='images/rmsf-view.gif',
render_params={"factor": 3}, # set to 4 for highest quality
)
movie.make()

[image: rmsf-bfactor-view]

You can also write the atoms to a file and visualise it in another program. As the original Universe did not contain altLocs, icodes or occupancies for each atom, some warnings will be printed (which are not visible here).

[13]:

u.atoms.write('rmsf_tempfactors.pdb')

References

[1] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[2] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Sean Seyler and Oliver Beckstein. Molecular dynamics trajectory for benchmarking MDAnalysis. June 2017. 00002. URL: https://figshare.com/articles/Molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/5108170, doi:10.6084/m9.figshare.5108170.v1.

[5] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

[6] B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and Products. Technometrics, 4(3):419–420, August 1962. URL: https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022, doi:10.1080/00401706.1962.10490022.

 Distances and contacts

Distances and contacts

The MDAnalysis.analysis.distances [https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/analysis/distances.html#module-MDAnalysis.analysis.distances] module provides functions to rapidly compute distances. These largely take in coordinate arrays.

	Atom-wise distances between matching AtomGroups

	All distances between two selections

	All distances within a selection

Residues can be determined to be in contact if atoms from the two residues are within a certain distance. Analysing the fraction of contacts retained by a protein over at trajectory, as compared to the number of contacts in a reference frame or structure, can give insight into folding processes and domain movements.

MDAnalysis.analysis.contacts [https://docs.mdanalysis.org/2.8.0-dev0/documentation_pages/analysis/contacts.html#module-MDAnalysis.analysis.contacts] contains functions and a class to analyse the fraction of native contacts over a trajectory.

	Fraction of native contacts over a trajectory

	Q1 vs Q2 contact analysis

	Contact analysis: number of contacts within a cutoff

	Write your own native contacts analysis method

 Atom-wise distances between matching AtomGroups

Atom-wise distances between matching AtomGroups

Here we compare the distances between alpha-carbons of the enzyme adenylate kinase in its open and closed conformations. distances.dist can be used to calculate distances between atom groups with the same number of atoms within them.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small, PDB_closed
from MDAnalysis.analysis import distances

import matplotlib.pyplot as plt
%matplotlib inline

import warnings
suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) AdK has three domains:

	CORE

	LID: an ATP-binding domain (residues 122-159)

	NMP: an AMP-binding domain (residues 30-59)

The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed conformations.

[2]:

u1 = mda.Universe(PDB_small) # open AdK
u2 = mda.Universe(PDB_closed) # closed AdK

Calculating the distance between CA atoms

We select the atoms named ‘CA’ of each Universe.

[3]:

ca1 = u1.select_atoms('name CA')
ca2 = u2.select_atoms('name CA')

distances.dist(API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/distances.html#MDAnalysis.analysis.distances.dist]) returns the residue numbers of both selections given. The offset keyword adds an offset to these residue numbers to help with comparison to each other and other file formats. Here we are happy with our residue numbers, so we use the default offset of 0. (See the documentation of distances.dist for more information.)

[4]:

resids1, resids2, dist = distances.dist(ca1, ca2,
 offset=0) # for residue numbers

Plotting

Below, we plot the distance over the residue numbers and highlight the LID and NMP domains of the protein. The LID domain in particular moves a significant distance between its opened and closed conformations.

[8]:

plt.plot(resids1, dist)
plt.ylabel('Ca distance (Angstrom)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[8]:

<matplotlib.legend.Legend at 0x7f06d2a3b7c0>

[image: ../../../_images/examples_analysis_distances_and_contacts_distances_between_atomgroups_11_1.png]

Calculating the distance with periodic boundary conditions

It is common to want to calculate distances with the minimum image convention. To do this, you must pass the unitcell dimensions of the system to the box keyword, even if your Universe has dimensions defined.

This should have the format: [lx, ly, lz, alpha, beta, gamma], where the first three numbers are the box lengths along each axis and the last three are the angles of the box.

[6]:

resids1_box, resids2_box, dist_box = distances.dist(ca1, ca2,
 box=[10, 10, 10, 90, 90, 90])

Plotting

[7]:

plt.plot(resids1_box, dist_box)
plt.ylabel('Ca distance (Angstrom)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[7]:

<matplotlib.legend.Legend at 0x7f06d09bc700>

[image: ../../../_images/examples_analysis_distances_and_contacts_distances_between_atomgroups_16_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 All distances between two selections

All distances between two selections

Here we use distances.distance_array to quantify the distances between each atom of a target set to each atom in a reference set, and show how we can extend that to calculating the distances between the centers-of-mass of residues.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
from MDAnalysis.analysis import distances

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import warnings
suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) AdK has three domains:

	CORE

	LID: an ATP-binding domain (residues 122-159)

	NMP: an AMP-binding domain (residues 30-59)

[2]:

u = mda.Universe(PDB_small) # open AdK

Calculating atom-to-atom distances between non-matching coordinate arrays

We select the alpha-carbon atoms of each domain.

[3]:

LID_ca = u.select_atoms('name CA and resid 122-159')
NMP_ca = u.select_atoms('name CA and resid 30-59')

n_LID = len(LID_ca)
n_NMP = len(NMP_ca)
print('LID has {} residues and NMP has {} residues'.format(n_LID, n_NMP))

LID has 38 residues and NMP has 30 residues

distances.distance_array(API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/distances.html#MDAnalysis.analysis.distances.distance_array]) will produce an array with shape (n, m) distances if there are n positions in the reference array and m positions in the other configuration. If you want to calculate distances following the minimum image convention, you must pass the universe dimensions into the box keyword.

[4]:

dist_arr = distances.distance_array(LID_ca.positions, # reference
 NMP_ca.positions, # configuration
 box=u.dimensions)
dist_arr.shape

[4]:

(38, 30)

Plotting distance as a heatmap

[5]:

fig, ax = plt.subplots()
im = ax.imshow(dist_arr, origin='upper')

add residue ID labels to axes
tick_interval = 5
ax.set_yticks(np.arange(n_LID)[::tick_interval])
ax.set_xticks(np.arange(n_NMP)[::tick_interval])
ax.set_yticklabels(LID_ca.resids[::tick_interval])
ax.set_xticklabels(NMP_ca.resids[::tick_interval])

add figure labels and titles
plt.ylabel('LID')
plt.xlabel('NMP')
plt.title('Distance between alpha-carbon')

colorbar
cbar = fig.colorbar(im)
cbar.ax.set_ylabel('Distance (Angstrom)')

[5]:

Text(0, 0.5, 'Distance (Angstrom)')

[image: ../../../_images/examples_analysis_distances_and_contacts_distances_between_selections_11_1.png]

Calculating residue-to-residue distances

As distances.distance_array just takes coordinate arrays as input, it is very flexible in calculating distances between each atom, or centers-of-masses, centers-of-geometries, and so on.

Instead of calculating the distance between the alpha-carbon of each residue, we could look at the distances between the centers-of-mass instead. The process is very similar to the atom-wise distances above, but we give distances.distance_array an array of residue center-of-mass coordinates instead.

[6]:

LID = u.select_atoms('resid 122-159')
NMP = u.select_atoms('resid 30-59')

LID_com = LID.center_of_mass(compound='residues')
NMP_com = NMP.center_of_mass(compound='residues')

n_LID = len(LID_com)
n_NMP = len(NMP_com)

print('LID has {} residues and NMP has {} residues'.format(n_LID, n_NMP))

LID has 38 residues and NMP has 30 residues

We can pass these center-of-mass arrays directly into distances.distance_array.

[7]:

res_dist = distances.distance_array(LID_com, NMP_com,
 box=u.dimensions)

Plotting

[8]:

fig2, ax2 = plt.subplots()
im2 = ax2.imshow(res_dist, origin='upper')

add residue ID labels to axes
tick_interval = 5
ax2.set_yticks(np.arange(n_LID)[::tick_interval])
ax2.set_xticks(np.arange(n_NMP)[::tick_interval])
ax2.set_yticklabels(LID.residues.resids[::tick_interval])
ax2.set_xticklabels(NMP.residues.resids[::tick_interval])

add figure labels and titles
plt.ylabel('LID')
plt.xlabel('NMP')
plt.title('Distance between center-of-mass')

colorbar
cbar2 = fig2.colorbar(im)
cbar2.ax.set_ylabel('Distance (Angstrom)')

[8]:

Text(0, 0.5, 'Distance (Angstrom)')

[image: ../../../_images/examples_analysis_distances_and_contacts_distances_between_selections_18_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 All distances within a selection

All distances within a selection

Here we calculate the distance of every atom to every other atom in a selection, and show how we can extend this to residues.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
from MDAnalysis.analysis import distances

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import warnings
suppress some MDAnalysis warnings when writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u = mda.Universe(PDB_small)

Calculating atom-wise distances

We begin by selecting the alpha-carbons of the protein.

[3]:

ca = u.select_atoms('name CA')
n_ca = len(ca)
n_ca

[3]:

214

When given an array with \(n\) positions, distances.self_distance_array (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/distances.html#MDAnalysis.analysis.distances.self_distance_array]) returns the distances in a flat vector with length \(\frac{n(n-1)}{2}\). These correspond to the flattened upper triangular values of a square distance matrix.

[4]:

self_distances = distances.self_distance_array(ca.positions)
self_distances.shape

[4]:

(22791,)

We can convert this into a more easily interpreted square distance array. First we create an all-zero square array and get the indices of the upper and lower triangular matrices.

[5]:

sq_dist_arr = np.zeros((n_ca, n_ca))
triu = np.triu_indices_from(sq_dist_arr, k=1)

Then we simply assign the calculated distances to the upper and lower triangular positions.

[6]:

sq_dist_arr[triu] = self_distances
sq_dist_arr.T[triu] = self_distances

Plotting

[7]:

fig, ax = plt.subplots()
im = ax.pcolor(ca.resids, ca.resids, sq_dist_arr)

plt.pcolor gives a rectangular grid by default
so we need to make our heatmap square
ax.set_aspect('equal')

add figure labels and titles
plt.ylabel('Residue IDs')
plt.xlabel('Residue IDs')
plt.title('Distance between alpha-carbons in AdK')

colorbar
cbar = fig.colorbar(im)
cbar.ax.set_ylabel('Distance (Angstrom)')

[7]:

Text(0, 0.5, 'Distance (Angstrom)')

[image: ../../../_images/examples_analysis_distances_and_contacts_distances_within_selection_15_1.png]

Calculating distances for each residue

Instead of calculating the distance between the alpha-carbon of each residue, we could look at the distances between the centers-of-mass instead. The process is very similar to the atom-wise distances above, but we have to pass distances.self_distance_array an array of residue center-of-mass coordinates instead.

[8]:

res_com = u.atoms.center_of_mass(compound='residues')
n_res = len(res_com)
n_res

[8]:

214

As the number of residues remains the same, the resulting distances array has the same length.

[9]:

res_dist = distances.self_distance_array(res_com)
res_dist.shape

[9]:

(22791,)

This means we don’t need to re-define triu.

[10]:

sq_dist_res = np.zeros((n_res, n_res))
sq_dist_res[triu] = res_dist
sq_dist_res.T[triu] = res_dist

Plotting

The resulting plot looks pretty similar.

[11]:

fig2, ax2 = plt.subplots()
im2 = ax2.pcolor(u.residues.resids, u.residues.resids, sq_dist_res)

plt.pcolor gives a rectangular grid by default
so we need to make our heatmap square
ax2.set_aspect('equal')

add figure labels and titles
plt.ylabel('Residue IDs')
plt.xlabel('Residue IDs')
plt.title('Distance between centers-of-mass of AdK residues')

colorbar
cbar2 = fig2.colorbar(im2)
cbar2.ax.set_ylabel('Distance (Angstrom)')

[11]:

Text(0, 0.5, 'Distance (Angstrom)')

[image: ../../../_images/examples_analysis_distances_and_contacts_distances_within_selection_25_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 Fraction of native contacts over a trajectory

Fraction of native contacts over a trajectory

Here, we calculate the native contacts of a trajectory as a fraction of the native contacts in a given reference.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	matplotlib [https://matplotlib.org]

	pandas [https://pandas.pydata.org]

Optional packages for molecular visualisation: * nglview [http://nglviewer.org/nglview/latest/api.html]

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

See also

	Contact analysis: number of contacts within a cutoff (all contacts within a cutoff)

	Write your own contacts analysis method

	Q1 vs Q2 contact analysis

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import nglview as nv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]:

u = mda.Universe(PSF, DCD)

/Users/lily/pydev/mdanalysis/package/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Background

Residues can be determined to be in contact if atoms from the two residues are within a certain distance. Native contacts are those contacts that exist within a native state, as opposed to non-native contacts, which are formed along the path to a folded state or during the transition between two conformational states. MDAnalysis defines native contacts as those present in the reference structure (refgroup) given to the analysis.

Proteins often have more than one native state. Calculating the fraction of native contacts within a protein over a simulation can give insight into transitions between states, or into folding and unfolding processes. MDAnalysis supports three metrics for determining contacts:

	Hard distance cutoff (hard_cut_q)

	Radius cutoff (radius_cut_q) ([FKDD07])

	Soft potential-based cutoff (soft_cut_q) ([BHE13])

Please see the API documentation for the Contacts [https://docs.mdanalysis.org/stable/documentation_pages/analysis/contacts.html#MDAnalysis.analysis.contacts.Contacts] class for more information.

Defining the groups for contact analysis

For the purposes of this tutorial, we define pseudo-salt bridges as contacts. A more appropriate quantity for studying the transition between two protein conformations may be the contacts formed by alpha-carbon atoms, as this will give us insight into the movements of the protein in terms of the secondary and tertiary structure. The Q1 vs Q2 contact analysis demonstrates an example using the alpha-carbon atoms.

[3]:

sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Hard cutoff with a single reference

The 'hard_cut' or hard_cut_q() [https://docs.mdanalysis.org/stable/documentation_pages/analysis/contacts.html#MDAnalysis.analysis.contacts.hard_cut_q] method uses a hard cutoff for determining native contacts. Two residues are in contact if the distance between them is lower than or equal to the distance in the reference structure.

Below, we use the atomgroups in the universe at the current frame as a reference.

[4]:

ca1 = contacts.Contacts(u,
 select=(sel_acidic, sel_basic),
 refgroup=(acidic, basic),
 radius=4.5,
 method='hard_cut').run()

The results are available as a numpy array at ca1.timeseries. The first column is the frame, and the second is the fraction of contacts present in that frame.

[5]:

ca1_df = pd.DataFrame(ca1.results.timeseries,
 columns=['Frame',
 'Contacts from first frame'])
ca1_df.head()

[5]:

 Q1 vs Q2 contact analysis

Q1 vs Q2 contact analysis

Here we calculate a Q1 vs Q2 plot, where Q1 refers to fraction of native contacts along a trajectory with reference to the first frame, and Q2 represents the fraction of native contacts with reference to the last.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	matplotlib [https://matplotlib.org]

	pandas [https://pandas.pydata.org]

See also

	Fraction of native contacts over a trajectory

	Write your own contacts analysis method

	Contact analysis: number of contacts within a cutoff

Note

The contacts.q1q2 function uses the radius_cut_q method to calculate the fraction of native contacts for a conformation by determining that atoms i and j are in contact if they are within a given radius ([FKDD07], [BHE13])

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Background

Please see the Fraction of native contacts for an introduction to general native contacts analysis.

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]:

u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Calculating Q1 vs Q2

We choose to calculate contacts for all the alpha-carbons in the protein, and define the contact radius cutoff at 8 Angstrom. contacts.q1q2 [https://docs.mdanalysis.org/stable/documentation_pages/analysis/contacts.html#MDAnalysis.analysis.contacts.q1q2] returns a contacts.Contacts object, which we can run directly.

[3]:

q1q2 = contacts.q1q2(u, 'name CA', radius=8).run()

The data is in q1q2.timeseries. The first column of the data is always the frame number.

[4]:

q1q2_df = pd.DataFrame(q1q2.results.timeseries,
 columns=['Frame',
 'Q1',
 'Q2'])
q1q2_df.head()

[4]:

 Contact analysis: number of contacts within a cutoff

Contact analysis: number of contacts within a cutoff

We calculate the number of salt bridges in an enzyme as it transitions from a closed to an open conformation.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	matplotlib [https://matplotlib.org]

	pandas [https://pandas.pydata.org]

See also

	Write your own contacts analysis method

	Q1 vs Q2 contact analysis

	Fraction of native contacts over a trajectory

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Background

Quantifying the number of contacts over a trajectory can give insight into the formation and rearrangements of secondary and tertiary structure. This is closely related to native contacts analysis; where the fraction of native contacts refers to the fraction of contacts retained by a protein from the contacts in a reference frame, the number of contacts simply counts how many residues are within a certain cutoff for each frame. No reference is necessary. Please see the Fraction of native
contacts for an introduction to native contacts analysis.

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]:

u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Defining the groups for contact analysis

We define salt bridges as contacts between NH/NZ in ARG/LYS and OE*/OD* in ASP/GLU. It is not recommend to use this overly simplistic definition for real work that you want to publish.

[3]:

sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Calculating number of contacts within a cutoff

Below, we define a function that calculates the number of contacts between group_a and group_b within the radius cutoff, for each frame in a trajectory.

[4]:

def contacts_within_cutoff(u, group_a, group_b, radius=4.5):
 timeseries = []
 for ts in u.trajectory:
 # calculate distances between group_a and group_b
 dist = contacts.distance_array(group_a.positions, group_b.positions)
 # determine which distances <= radius
 n_contacts = contacts.contact_matrix(dist, radius).sum()
 timeseries.append([ts.frame, n_contacts])
 return np.array(timeseries)

The results are returned as a numpy array. The first column is the frame, and the second is the number of contacts present in that frame.

[5]:

ca = contacts_within_cutoff(u, acidic, basic, radius=4.5)
ca.shape

[5]:

(98, 2)

[6]:

ca_df = pd.DataFrame(ca, columns=['Frame',
 '# Contacts'])
ca_df.head()

[6]:

 Write your own native contacts analysis method

Write your own native contacts analysis method

The contacts.Contacts class has been designed to be extensible for your own analysis. Here we demonstrate how to define a new method to use to determine the fraction of native contacts.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	matplotlib [https://matplotlib.org]

	pandas [https://pandas.pydata.org]

See also

	Fraction of native contacts over a trajectory (pre-defined metrics and a general introduction to native contacts analysis)

	Q1 vs Q2 contact analysis

	Contact analysis: number of contacts within a cutoff

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]:

u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Background

Please see the Fraction of native contacts for an introduction to general native contacts analysis.

Defining salt bridges

We define salt bridges as contacts between NH/NZ in ARG/LYS and OE*/OD* in ASP/GLU. You may not want to use this definition for real work.

[3]:

sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Define your own function

Any function you define must have r and r0 as its first and second arguments respectively, even if you don’t necessarily use them:

	r: an array of distances between atoms at the current time

	r0: an array of distances between atoms in the reference

You can then define following arguments as keyword arguments.

In the function below, we calculate the fraction of native contacts that are less than radius, but greater than min_radius.

[4]:

def fraction_contacts_between(r, r0, radius=3.4, min_radius=2.5):
 is_in_contact = (r < radius) & (r > min_radius) # array of bools
 fraction = is_in_contact.sum()/r.size
 return fraction

Then we pass fraction_contacts_between to the contacts.Contacts class. Keyword arguments for our custom function must be in the kwargs dictionary. Even though we define a radius keyword in my custom analysis function, it is not automatically passed from contacts.Contacts. We have to make sure that it is in kwargs.

[5]:

ca = contacts.Contacts(u,
 select=(sel_acidic, sel_basic),
 refgroup=(acidic, basic),
 method=fraction_contacts_between,
 radius=5.0,
 kwargs={'radius': 5.0,
 'min_radius': 2.4}).run()

One easy way to post-process results is to turn them into a dataframe.

[6]:

ca_df = pd.DataFrame(ca.results.timeseries,
 columns=['Frame',
 'Contacts from first frame'])
ca_df.head()

[6]:

 Trajectory similarity

Trajectory similarity

A molecular dynamics trajectory with \(N\) atoms can be considered through a path through \(3N\)-dimensional molecular configuration space. MDAnalysis contains a number of algorithms to compare the conformational ensembles of different trajectories. Most of these are in the MDAnalysis.analysis.encore module ([TPB+15]) and compare estimated probability distributions to measure similarity. The path similarity analysis compares the RMSD between pairs of structures in conformation transition paths. MDAnalysis.analysis.encore also contains functions for evaluating the conformational convergence of a trajectory using the similarity over conformation clusters or similarity in a reduced dimensional space.

	Comparing the geometric similarity of trajectories

	Calculating the Harmonic Ensemble Similarity between ensembles

	Calculating the Clustering Ensemble Similarity between ensembles

	Calculating the Dimension Reduction Ensemble Similarity between ensembles

	Evaluating convergence

 Comparing the geometric similarity of trajectories

Comparing the geometric similarity of trajectories

Here we compare the geometric similarity of trajectories using the following path metrics:

	the Hausdorff distance

	the discrete Fréchet

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 0.18.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

	seaborn [https://seaborn.pydata.org]

Note

The metrics and methods in the psa path similarity analysis module are from ([SKTB15]). Please cite them when using the MDAnalysis.analysis.psa module in published work.

[1]:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,
 PSF_NAMD_GBIS, DCD_NAMD_GBIS,
 PDB_small, CRD)
from MDAnalysis.analysis import psa
import warnings
suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(GRO, XTC)
u4 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)
u5 = mda.Universe(PDB_small, CRD, PDB_small,
 CRD, PDB_small, CRD, PDB_small)

ref = mda.Universe(PDB_small)

labels = ['DCD', 'DCD2', 'XTC', 'NAMD', 'mixed']

The trajectories can have different lengths, as seen below.

[3]:

print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 10

Aligning trajectories

We set up the PSAnalysis (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/psa.html#MDAnalysis.analysis.psa.PSAnalysis]) with our list of Universes and labels. While path_select determines which atoms to calculate the path similarities for, select determines which atoms to use to align each Universe to reference.

[4]:

CORE_sel = 'name CA and (resid 1:29 or resid 60:121 or resid 160:214)'

ps = psa.PSAnalysis([u1, u2, u3, u4, u5],
 labels=labels,
 reference=ref,
 select=CORE_sel,
 path_select='name CA')

Generating paths

For each Universe, we will generate a transition path containing each conformation from a trajectory using generate_paths (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/psa.html#MDAnalysis.analysis.psa.PSAnalysis.generate_paths]).

First, we will do a mass-weighted alignment of each trajectory to the reference structure reference, along the atoms in select. To turn off the mass weighting, set weights=None. If your trajectories are already aligned, you can skip the alignment with align=False.

[5]:

ps.generate_paths(align=True, save=False, weights='mass')

Hausdorff method

Now we can compute the similarity of each path. The default metric is to use the Hausdorff method. [5] The Hausdorff distance between two conformation transition paths \(P\) and \(Q\) is:

\[\delta_H(P,Q) = \max{(\delta_h(P|Q), \delta_h(Q|P))}\]

\(\delta_h(P|Q)\) is the directed Hausdorff distance from \(P\) to \(Q\), and is defined as:

\[\delta_h(P|Q) = \max_{p \in P}\min_{q \in Q} d(p,q)\]

The directed Hausdorff distance of \(P\) to \(Q\) is the distance between the two points, \(p \in P\) and its structural nearest neighbour \(q \in Q\), for the point \(p\) where the distance is greatest. This is not commutative, i.e. the directed Hausdorff distance from \(Q\) to \(P\) is not the same. (See scipy.spatial.distance.directed_hausdorff [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.directed_hausdorff.html] for more
information).

In MDAnalysis, the Hausdorff distance is the RMSD between a pair of conformations in \(P\) and \(Q\), where the one of the conformations in the pair has the least similar nearest neighbour.

[6]:

ps.run(metric='hausdorff')

The distance matrix is saved in ps.D.

[7]:

ps.D

[7]:

array([[0. , 1.33312648, 22.37206002, 2.04737477, 7.55204678],
 [1.33312648, 0. , 22.3991666 , 2.07957562, 7.55032598],
 [22.37206002, 22.3991666 , 0. , 22.42282661, 25.74534554],
 [2.04737477, 2.07957562, 22.42282661, 0. , 7.67052252],
 [7.55204678, 7.55032598, 25.74534554, 7.67052252, 0.]])

Plotting

psa.PSAnalysis provides two convenience methods for plotting this data. The first is to plot a heat-map dendrogram from clustering the trajectories based on their path similarity. You can use any clustering method supported by scipy.cluster.hierarchy.linkage [https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html]; the default is ‘ward’.

[8]:

fig = ps.plot(linkage='ward')

<Figure size 640x480 with 0 Axes>

[image: ../../../_images/examples_analysis_trajectory_similarity_psa_20_1.png]

The other is to plot a heatmap annotated with the distance values. Again, the trajectories are displayed in an arrangement that fits the clustering method.

Note

You will need to install the data visualisation library Seaborn [https://seaborn.pydata.org/installing.html] for this function.

[9]:

fig = ps.plot_annotated_heatmap(linkage='single')

<Figure size 640x480 with 0 Axes>

[image: ../../../_images/examples_analysis_trajectory_similarity_psa_22_1.png]

Discrete Fréchet distances

The discrete Fréchet distance between two conformation transition paths \(P\) and \(Q\) is:

\[\delta_{dF}(P,Q) = \min_{C \in \Gamma_{P,Q}} \|C\|\]

where \(C\) is a coupling in the set of all couplings \(\Gamma_{P,Q}\) between \(P\) and \(Q\). A coupling \(C(P,Q)\) is a sequence of pairs of conformations in \(P\) and \(Q\), where the first/last pairs are the first/last points of the respective paths, and for each successive pair, at least one point in \(P\) or \(Q\) must advance to the next frame.

\[C(P,Q) \equiv (p_{a_1}, q_{b_1}), (p_{a_2}, q_{b_2}), ..., (p_{a_L}, q_{b_L})\]

The coupling distance \(\|C\|\) is the largest distance between a pair of points in such a sequence.

\[\|C\| \equiv \max_{i=1, ..., L} d(p_{a_i}, q_{b_i})\]

In MDAnalysis, the discrete Fréchet distance is the lowest possible RMSD between a conformation from \(P\) and a conformation from \(Q\), where the two frames are at similar points along the trajectory, and they are the least structurally similar in that particular coupling sequence. [6-9]

[10]:

ps.run(metric='discrete_frechet')
ps.D

[10]:

array([[0. , 1.33312649, 22.37205967, 2.04737475, 7.55204694],
 [1.33312649, 0. , 22.39916723, 2.07957565, 7.55032613],
 [22.37205967, 22.39916723, 0. , 22.42282569, 25.74534511],
 [2.04737475, 2.07957565, 22.42282569, 0. , 7.67052241],
 [7.55204694, 7.55032613, 25.74534511, 7.67052241, 0.]])

Plotting

[11]:

fig = ps.plot(linkage='ward')

<Figure size 640x480 with 0 Axes>

[image: ../../../_images/examples_analysis_trajectory_similarity_psa_27_1.png]

[12]:

fig = ps.plot_annotated_heatmap(linkage='single')

<Figure size 640x480 with 0 Axes>

[image: ../../../_images/examples_analysis_trajectory_similarity_psa_28_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Sean L. Seyler, Avishek Kumar, M. F. Thorpe, and Oliver Beckstein. Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways. PLOS Computational Biology, 11(10):e1004568, October 2015. URL: https://dx.plos.org/10.1371/journal.pcbi.1004568, doi:10.1371/journal.pcbi.1004568.

 Calculating the Harmonic Ensemble Similarity between ensembles

Calculating the Harmonic Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in four trajectories, using the harmonic ensemble similarity method.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

Note

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.analysis.encore module in published work.

[1]:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,
 PSF_NAMD_GBIS, DCD_NAMD_GBIS,
 PDB_small, CRD)
from MDAnalysis.analysis import encore

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(GRO, XTC)
u4 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'XTC', 'NAMD']

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behaviour will be changed in 3.0 to be the same as other readers
 warnings.warn("DCDReader currently makes independent timesteps"

The trajectories can have different lengths, as seen below.

[3]:

print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 10

Calculating harmonic similarity

The harmonic ensemble similarity method treats the conformational ensemble within each trajectory as a high-dimensional Gaussian distribution \(N(\mu, \Sigma)\). The mean \(\mu\) is estimated as the average over the ensemble. The covariance matrix \(\Sigma\) is calculated either using a shrinkage estimator (cov_estimator='shrinkage') or a maximum-likelihood method (cov_estimator='ml').

The harmonic ensemble similarity is then calculated using the symmetrised version of the Kullback-Leibler divergence. This has no upper bound, so you can get some very high values for very different ensembles.

The function we will use is encore.hes (API docs here [https://docs.mdanalysis.org/stable/documentation_pages/analysis/encore/similarity.html#MDAnalysis.analysis.encore.similarity.hes]). It is recommended that you align your trajectories before computing the harmonic similarity. You can either do this yourself with align.AlignTraj, or pass align=True into encore.hes. The latter option will align each of your Universes to the current timestep of the first Universe. Note that
since encore.hes will pull your trajectories into memory, this changes the positions of your Universes.

[4]:

hes, details = encore.hes([u1, u2, u3, u4],
 select='backbone',
 align=True,
 cov_estimator='shrinkage',
 weights='mass')

[5]:

for row in hes:
 for h in row:
 print("{:>10.1f}".format(h), end = ' ')
 print("")

 0.0 24955.7 1879874.5 145622.3
 24955.7 0.0 1659867.5 161102.3
 1879874.5 1659867.5 0.0 9900092.7
 145622.3 161102.3 9900092.7 0.0

The mean and covariance matrices for each Universe are saved in details.

[6]:

details["ensemble1_mean"].shape

[6]:

(2565,)

Plotting

[7]:

fig, ax = plt.subplots()
im = plt.imshow(hes)
plt.xticks(np.arange(4), labels)
plt.yticks(np.arange(4), labels)
plt.title('Harmonic ensemble similarity')
cbar = fig.colorbar(im)

[image: ../../../_images/examples_analysis_trajectory_similarity_harmonic_ensemble_similarity_14_0.png]

References

[1] R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations [http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html]. In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science Conference, pages 98-105, Austin, TX, 2016. SciPy, doi:
10.25080/majora-629e541a-00e [https://doi.org/10.25080/majora-629e541a-00e].

[2] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 32 (2011), 2319-2327, doi:10.1002/jcc.21787 [https://dx.doi.org/10.1002/jcc.21787]. PMCID:PMC3144279 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144279/]

[3] ENCORE: Software for Quantitative Ensemble Comparison. Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, Kresten Lindorff-Larsen. PLoS Comput Biol. 2015, 11, e1004415.

[4] Beckstein O, Denning EJ, Perilla JR, Woolf TB. Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open<–>closed transitions. J Mol Biol. 2009;394(1):160–176. doi:10.1016/j.jmb.2009.09.009 [https://dx.doi.org/10.1016%2Fj.jmb.2009.09.009]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. ENCORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415, October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415, doi:10.1371/journal.pcbi.1004415.

 Calculating the Clustering Ensemble Similarity between ensembles

Calculating the Clustering Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in three trajectories, using the clustering ensemble similarity method.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	scikit-learn [https://scikit-learn.org/stable/]

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

Note

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.analysis.encore module in published work.

[1]:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,
 PSF_NAMD_GBIS, DCD_NAMD_GBIS)
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.clustering import ClusteringMethod as clm

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'NAMD']

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behaviour will be changed in 3.0 to be the same as other readers
 warnings.warn("DCDReader currently makes independent timesteps"

The trajectories can have different lengths, as seen below.

[3]:

print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 100

Calculating clustering similarity with default settings

The clustering ensemble similarity method (ces, API docs here [https://docs.mdanalysis.org/stable/documentation_pages/analysis/encore/similarity.html#MDAnalysis.analysis.encore.similarity.ces]) combines every trajectory into a whole space of conformations, and then uses a user-specified clustering_method to partition this into clusters. The population of each trajectory ensemble within each cluster is taken as a probability density function.

The similarity of each probability density function is compared using the Jensen-Shannon divergence. This divergence has an upper bound of \(\ln{(2)}\), representing no similarity between the ensembles, and a lower bound of 0.0, representing identical conformational ensembles.

You do not need to align your trajectories, as the function will align it for you (along your selection atoms, which are select='name CA' by default).

[4]:

ces0, details0 = encore.ces([u1, u2, u3])

encore.ces returns two outputs. ces0 is the similarity matrix for the ensemble of trajectories.

[5]:

ces0

[5]:

array([[0. , 0.68070702, 0.69314718],
 [0.68070702, 0. , 0.69314718],
 [0.69314718, 0.69314718, 0.]])

details0 contains the calculated clusters as a encore.clustering.ClusterCollection.ClusterCollection.

[6]:

cluster_collection = details0['clustering'][0]
print(type(cluster_collection))
print('We have found {} clusters'.format(len(cluster_collection)))

<class 'MDAnalysis.analysis.encore.clustering.ClusterCollection.ClusterCollection'>
We have found 49 clusters

We can access each Cluster at cluster_collection.clusters. For example, the first one has these elements:

[7]:

first_cluster = cluster_collection.clusters[0]
first_cluster

[7]:

<Cluster with 5 elements, centroid=1, id=0>

[8]:

first_cluster.elements

[8]:

array([0, 1, 2, 3, 98])

Each cluster has an ID number and a centroid conformation.

[9]:

print('The ID of this cluster is:', first_cluster.id)
print('The centroid is', first_cluster.centroid)

The ID of this cluster is: 0
The centroid is 1

Plotting

[10]:

fig0, ax0 = plt.subplots()
im0 = plt.imshow(ces0, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Clustering ensemble similarity')
cbar0 = fig0.colorbar(im0)
cbar0.set_label('Jensen-Shannon divergence');

[image: ../../../_images/examples_analysis_trajectory_similarity_clustering_ensemble_similarity_20_0.png]

Calculating clustering similarity with one method

Clustering methods should be subclasses of analysis.encore.clustering.ClusteringMethod, initialised with your chosen parameters. Below, we set up an affinity progragation scheme, which uses message-passing to choose a number of ‘exemplar’ points to represent the data and updates these points until they converge. The preference parameter controls how many exemplars are used – a higher value results in more clusters, while a lower value results in fewer clusters. The damping factor
damps the message passing to avoid numerical oscillations. (See the scikit-learn user guide for more information.) [https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation]

The other keyword arguments control when to stop clustering. Adding noise to the data can also avoid numerical oscillations.

[11]:

clustering_method = clm.AffinityPropagationNative(preference=-1.0,
 damping=0.9,
 max_iter=200,
 convergence_iter=30,
 add_noise=True)

By default, MDAnalysis will run the job on one core. If it is taking too long and you have the resources, you can increase the number of cores used.

[12]:

ces1, details1 = encore.ces([u1, u2, u3],
 select='name CA',
 clustering_method=clustering_method,
 ncores=4)

Plotting

[13]:

fig1, ax1 = plt.subplots()
im1 = plt.imshow(ces1, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Clustering ensemble similarity')
cbar1 = fig1.colorbar(im1)
cbar1.set_label('Jensen-Shannon divergence');

[image: ../../../_images/examples_analysis_trajectory_similarity_clustering_ensemble_similarity_27_0.png]

Calculating clustering similarity with multiple methods

You may want to try different clustering methods, or use different parameters within the methods. encore.ces allows you to pass a list of clustering_methods to be applied.

Note

To use the other ENCORE methods available, you need to install scikit-learn [https://scikit-learn.org/stable/].

Trying out different clustering parameters

The KMeans clustering algorithm separates samples into \(n\) groups of equal variance, with centroids that minimise the inertia. You must choose how many clusters to partition. (See the scikit-learn user guide for more information.) [https://scikit-learn.org/stable/modules/clustering.html#k-means]

[14]:

km1 = clm.KMeans(12, # no. clusters
 init = 'k-means++', # default
 algorithm="auto") # default

km2 = clm.KMeans(6, # no. clusters
 init = 'k-means++', # default
 algorithm="auto") # default

The DBSCAN algorithm is a density-based clustering method that defines clusters as ‘high density’ areas, separated by low density areas. The parameters min_samples and eps define how dense an area should be to form a cluster. Clusters are defined around core points which have at least min_samples neighbours within a distance of eps. Points that are at least eps in distance from any core point are considered outliers. (See the scikit-learn user guide for more
information.) [https://scikit-learn.org/stable/modules/clustering.html#dbscan]

A higher min_samples or lower eps mean that data points must be more dense to form a cluster. You should consider your eps carefully. In MDAnalysis, eps can be interpreted as the distance between two points in Angstrom.

Note

DBSCAN is an algorithm that can identify outliers, or data points that don’t fit into any cluster. dres() and dres_convergence() treat the outliers as their own cluster. This means that the Jensen-Shannon divergence will be lower than it should be for trajectories that have outliers. Do not use this clustering method unless you are certain that your trajectories will not have outliers.

[15]:

db1 = clm.DBSCAN(eps=0.5,
 min_samples=5,
 algorithm='auto',
 leaf_size=30)

db2 = clm.DBSCAN(eps=1,
 min_samples=5,
 algorithm='auto',
 leaf_size=30)

When we pass a list of clustering methods to encore.ces, the results get saved in ces2 and details2 in order.

[16]:

ces2, details2 = encore.ces([u1, u2, u3],
 select='name CA',
 clustering_method=[km1, km2, db1, db2],
 ncores=4)
print(len(ces2), len(details2['clustering']))

4 4

Plotting

[17]:

titles = ['Kmeans 12 clusters', 'Kmeans 6 clusters', 'DBSCAN eps=0.5', 'DBSCAN eps=1']
fig2, axes = plt.subplots(1, 4, sharey=True, figsize=(15, 3))
for i, (data, title) in enumerate(zip(ces2, titles)):
 imi = axes[i].imshow(data, vmax=np.log(2), vmin=0)
 axes[i].set_xticks(np.arange(3))
 axes[i].set_xticklabels(labels)
 axes[i].set_title(title)
plt.yticks(np.arange(3), labels)
cbar2 = fig2.colorbar(imi, ax=axes.ravel().tolist())
cbar2.set_label('Jensen-Shannon divergence');

[image: ../../../_images/examples_analysis_trajectory_similarity_clustering_ensemble_similarity_38_0.png]

As can be seen, reducing the number of clusters in the K-means method emphasises that DCD2 is more similar to the NAMD trajectory than DCD. Meanwhile, increasing eps in DBSCAN clearly lowered the density required to form a cluster so much that every trajectory is in the same cluster, and therefore they have identical probability distributions.

[18]:

n_db = len(details2['clustering'][-1])

print('Number of clusters in DBSCAN eps=1: {}'.format(n_db))

Number of clusters in DBSCAN eps=1: 1

Estimating the error in a clustering ensemble similarity analysis

encore.ces also allows for error estimation using a bootstrapping method. This returns the average Jensen-Shannon divergence, and standard deviation over the samples.

[19]:

avgs, stds = encore.ces([u1, u2, u3],
 select='name CA',
 clustering_method=clustering_method,
 estimate_error=True,
 ncores=4)

[20]:

avgs

[20]:

array([[0. , 0.68682809, 0.69314718],
 [0.68682809, 0. , 0.69314718],
 [0.69314718, 0.69314718, 0.]])

[21]:

stds

[21]:

array([[0.00000000e+00, 5.26432545e-03, 7.02166694e-17],
 [5.26432545e-03, 0.00000000e+00, 8.59975057e-17],
 [7.02166694e-17, 8.59975057e-17, 0.00000000e+00]])

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. ENCORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415, October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415, doi:10.1371/journal.pcbi.1004415.

 Calculating the Dimension Reduction Ensemble Similarity between ensembles

Calculating the Dimension Reduction Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in four trajectories, using the dimension reduction ensemble similarity method.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	scikit-learn [https://scikit-learn.org/stable/]

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

Note

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.analysis.encore module in published work.

[1]:

import numpy as np
import matplotlib.pyplot as plt
This import registers a 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,
 PSF_NAMD_GBIS, DCD_NAMD_GBIS)
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.dimensionality_reduction import DimensionalityReductionMethod as drm

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'NAMD']

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

The trajectories can have different lengths, as seen below.

[3]:

print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 100

Calculating dimension reduction similarity with default settings

The dimension reduction similarity method projects ensembles onto a lower-dimensional space using your chosen dimension reduction algorithm (by default: stochastic proximity embedding). A probability density function is estimated with Gaussian-based kernel-density estimation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html], using Scott’s rule to select the bandwidth.

The similarity of each probability density function is compared using the Jensen-Shannon divergence. This divergence has an upper bound of \(\ln{(2)}\) and a lower bound of 0.0. Normally, \(\ln{(2)}\) represents no similarity between the ensembles, and 0.0 represents identical conformational ensembles. However, due to the stochastic nature of the dimension reduction, two identical symbols will not necessarily result in an exact divergence of 0.0. In addition, calculating the similarity
with dres() twice will result in similar but not identical numbers.

You do not need to align your trajectories, as the function will align it for you (along your selection atoms, which are select='name CA' by default). The function we use is dres (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/encore/similarity.html#MDAnalysis.analysis.encore.similarity.dres]).

[4]:

dres0, details0 = encore.dres([u1, u2, u3])

encore.dres returns two outputs. dres0 is the similarity matrix for the ensemble of trajectories.

[5]:

dres0

[5]:

array([[0. , 0.68134177, 0.68452079],
 [0.68134177, 0. , 0.66369356],
 [0.68452079, 0.66369356, 0.]])

details0 contains information on the dimensionality reduction, as well as the associated reduced coordinates. Each frame is in the conformational ensemble is reduced to 3 dimensions.

[6]:

reduced = details0['reduced_coordinates'][0]
reduced.shape

[6]:

(3, 300)

Plotting

As with the other ensemble similarity methods, we can plot a flat matrix of similarity values.

[7]:

fig0, ax0 = plt.subplots()
im0 = plt.imshow(dres0, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Dimension reduction ensemble similarity')
cbar0 = fig0.colorbar(im0)
cbar0.set_label('Jensen-Shannon divergence')

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_16_0.png]

We can also plot the reduced coordinates to directly visualise where each trajectory lies in the lower-dimensional space.

For the plotting of the reduced dimensions, we define a helper function to make it easier to partition the data.

[8]:

def zip_data_with_labels(reduced):
 rd_dcd = reduced[:, :98] # first 98 frames
 rd_dcd2 = reduced[:, 98:(98+102)] # next 102 frames
 rd_namd = reduced[:,(98+102):] # last 100 frames
 return zip([rd_dcd, rd_dcd2, rd_namd], labels)

[24]:

rdfig0 = plt.figure()
rdax0 = rdfig0.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(reduced):
 rdax0.scatter(*data, label=label)
plt.legend()

[24]:

<matplotlib.legend.Legend at 0x7fd2165443a0>

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_19_1.png]

Calculating dimension reduction similarity with one method

Dimension reduction methods should be subclasses of analysis.encore.dimensionality_reduction.DimensionalityReductionMethod, initialised with your chosen parameters.

Below, we set up stochastic proximity embedding scheme, which maps data to lower dimensions by iteratively adjusting the distance between a pair of points on the lower-dimensional map to match their full-dimensional proximity. The learning rate controls the magnitude of these adjustments, and decreases over the mapping from max_lam (default: 2.0) to min_lam (default: 0.1) to avoid numerical oscillation. The learning rate is updated every cycle for ncycles, over which nstep
adjustments are performed.

The number of dimensions to map to is controlled by the keyword dimension (default: 2).

[10]:

dim_red_method = drm.StochasticProximityEmbeddingNative(dimension=3,
 min_lam=0.2,
 max_lam=1.0,
 ncycle=50,
 nstep=1000)

You can also control the number of samples nsamples drawn from the ensembles used to calculate the Jensen-Shannon divergence.

By default, MDAnalysis will run the job on one core. If it is taking too long and you have the resources, you can increase the number of cores used.

[11]:

dres1, details1 = encore.dres([u1, u2, u3],
 select='name CA',
 dimensionality_reduction_method=dim_red_method,
 nsamples=1000,
 ncores=4)

Plotting

Reducing the learning rate, number of cycles, and number of steps for the stochastic proximity embedding seems to have left our trajectories closer on the lower-dimensional map.

[12]:

fig1, ax1 = plt.subplots()
im1 = plt.imshow(dres1, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Dimension reduction ensemble similarity')
cbar1 = fig1.colorbar(im1)
cbar1.set_label('Jensen-Shannon divergence')

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_27_0.png]

[13]:

reduced1 = details1['reduced_coordinates'][0]

rdfig1 = plt.figure()
rdax1 = rdfig1.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(reduced1):
 rdax1.scatter(*data, label=label)
plt.legend()

[13]:

<matplotlib.legend.Legend at 0x7fd1d0c7ad00>

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_28_1.png]

Calculating dimension reduction similarity with multiple methods

You may want to try different dimension reduction methods, or use different parameters within the methods. encore.dres allows you to pass a list of dimensionality_reduction_methods to be applied.

Note

To use the other ENCORE methods available, you need to install scikit-learn [https://scikit-learn.org/stable/].

Trying out different dimension reduction parameters

Principal component analysis uses singular value decomposition to project data onto a lower dimensional space. (See the scikit-learn user guide for more information.) [https://scikit-learn.org/stable/modules/decomposition.html#pca]

The method provided by MDAnalysis.encore accepts any of the keyword arguments of sklearn.decomposition.PCA [https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html] except n_components. Instead, use dimension to specify how many components to keep.

[14]:

pc1 = drm.PrincipalComponentAnalysis(dimension=1,
 svd_solver='auto')
pc2 = drm.PrincipalComponentAnalysis(dimension=2,
 svd_solver='auto')
pc3 = drm.PrincipalComponentAnalysis(dimension=3,
 svd_solver='auto')
pc4 = drm.PrincipalComponentAnalysis(dimension=4,
 svd_solver='auto')

When we pass a list of clustering methods to encore.dres, the results get saved in dres2 and details2 in order.

[15]:

dres2, details2 = encore.dres([u1, u2, u3],
 select='name CA',
 dimensionality_reduction_method=[pc1, pc2, pc3, pc4],
 ncores=4)
print(len(dres2), len(details2['reduced_coordinates']))

4 4

Plotting

[16]:

titles = ['Dim = {}'.format(n) for n in range(1, 5)]
fig2, axes = plt.subplots(1, 4, sharey=True, figsize=(15, 3))
for i, (data, title) in enumerate(zip(dres2, titles)):
 imi = axes[i].imshow(data, vmax=np.log(2), vmin=0)
 axes[i].set_xticks(np.arange(3))
 axes[i].set_xticklabels(labels)
 axes[i].set_title(title)
plt.yticks(np.arange(3), labels)
cbar2 = fig2.colorbar(imi, ax=axes.ravel().tolist())
cbar2.set_label('Jensen-Shannon divergence')

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_37_0.png]

In this case, adding more dimensions to the principal component analysis has little difference in how similar each ensemble is over its resulting probability distribution (i.e. not similar at all!)

[17]:

rd_p1, rd_p2, rd_p3, _ = details2['reduced_coordinates']

If we plot how the trajectories vary on one dimension with a violin plot, we can see that DCD is indeed very distant from DCD2 and NAMD on the first principal component.

[18]:

rd_p1_fig, rd_p1_ax = plt.subplots(figsize=(4, 8))
split_data = [x[0].reshape((-1,)) for x in zip_data_with_labels(rd_p1)]
rd_p1_ax.violinplot(split_data, showextrema=False)
rd_p1_ax.set_xticks(np.arange(1, 4))
rd_p1_ax.set_xticklabels(labels)

[18]:

[Text(1, 0, 'DCD'), Text(2, 0, 'DCD2'), Text(3, 0, 'NAMD')]

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_41_1.png]

Expanding out to the second principal component shows that DCD2 and NAMD mainly vary on the second axis.

[19]:

rd_p2_fig, rd_p2_ax = plt.subplots()
for data, label in zip_data_with_labels(rd_p2):
 rd_p2_ax.scatter(*data, label=label)
plt.legend()

[19]:

<matplotlib.legend.Legend at 0x7fd21662ec10>

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_43_1.png]

Plotting over the top three principal components gives quite a different result to the reduced coordinates given by stochastic proximity embedding.

[20]:

rd_p3_fig = plt.figure(figsize=(8, 6))
rd_p3_ax = rd_p3_fig.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(rd_p3):
 rd_p3_ax.scatter(*data, label=label)
rd_p3_ax.set_xlabel('PC 1')
rd_p3_ax.set_ylabel('PC 2')
rd_p3_ax.set_zlabel('PC 3')
plt.legend()

[20]:

<matplotlib.legend.Legend at 0x7fd216582df0>

[image: ../../../_images/examples_analysis_trajectory_similarity_dimension_reduction_ensemble_similarity_45_1.png]

Estimating the error in a dimension reduction ensemble similarity analysis

encore.dres also allows for error estimation using a bootstrapping method. This returns the average Jensen-Shannon divergence, and standard deviation over the samples.

[21]:

avgs, stds = encore.dres([u1, u2, u3],
 select='name CA',
 dimensionality_reduction_method=dim_red_method,
 estimate_error=True,
 ncores=4)

[22]:

avgs

[22]:

array([[0. , 0.24545978, 0.60069985],
 [0.24545978, 0. , 0.59556372],
 [0.60069985, 0.59556372, 0.]])

[23]:

stds

[23]:

array([[0. , 0.06153911, 0.05076614],
 [0.06153911, 0. , 0.03881675],
 [0.05076614, 0.03881675, 0.]])

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. ENCORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415, October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415, doi:10.1371/journal.pcbi.1004415.

 Evaluating convergence

Evaluating convergence

Here we evaluate the convergence of a trajectory using the clustering ensemble similarity method and the dimensionality reduction ensemble similarity methods.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Last updated: December 2022

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

	scikit-learn [https://scikit-learn.org/stable/]

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

Note

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the MDAnalysis.analysis.encore module in published work.

[1]:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.clustering import ClusteringMethod as clm
from MDAnalysis.analysis.encore.dimensionality_reduction import DimensionalityReductionMethod as drm

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Evaluating convergence with similarity measures

The convergence of the trajectory is evaluated by the similarity of the conformation ensembles in windows of the trajectory. The trajectory is divided into windows that increase by window_size frames. For example, if your trajectory had 13 frames and you specified a window_size=3, your windows would be:

- Window 1: ---
- Window 2: ------
- Window 3: ---------
- Window 4: -------------

Where - represents 1 frame.

These are compared using either the similarity of their clusters (ces_convergence) or their reduced dimension coordinates (dres_convergence). The rate at which the similarity values drop to 0 is indicative of how much the trajectory keeps on resampling the same regions of the conformational space, and therefore is the rate of convergence.

Using default arguments with clustering ensemble similarity

See clustering_ensemble_similarity.ipynb for an introduction to comparing trajectories via clustering. See the API documentation for ces_convergence [https://docs.mdanalysis.org/stable/documentation_pages/analysis/encore/similarity.html#MDAnalysis.analysis.encore.similarity.ces_convergence] for more information.

[3]:

ces_conv = encore.ces_convergence(u, # universe
 10, # window size
 select='name CA') # default

The output is an array of similarity values, with the shape (number_of_windows, number_of_clustering_methods).

[4]:

for row in ces_conv:
 for sim in row:
 print("{:>7.4f}".format(sim))

 0.4819
 0.4028
 0.3170
 0.2522
 0.1983
 0.1464
 0.0991
 0.0567
 0.0000

This can be easily plotted as a line.

[15]:

ces_fig, ces_ax = plt.subplots()
plt.plot(ces_conv)
ces_ax.set_xlabel('Window')
ces_ax.set_ylabel('Jensen-Shannon divergence')

[15]:

Text(0, 0.5, 'Jensen-Shannon divergence')

[image: ../../../_images/examples_analysis_trajectory_similarity_convergence_13_1.png]

Comparing different clustering methods

You may want to try different clustering methods, or use different parameters within the methods. encore.ces_convergence allows you to pass a list of clustering_methods to be applied, much like normal clustering ensemble similarity methods.

Note

To use the other ENCORE methods available, you need to install scikit-learn [https://scikit-learn.org/stable/].

The KMeans clustering algorithm separates samples into \(n\) groups of equal variance, with centroids that minimise the inertia. You must choose how many clusters to partition. (See the scikit-learn user guide for more information.) [https://scikit-learn.org/stable/modules/clustering.html#k-means]

[6]:

km1 = clm.KMeans(12, # no. clusters
 init = 'k-means++', # default
 algorithm="auto") # default

km2 = clm.KMeans(6, # no. clusters
 init = 'k-means++', # default
 algorithm="auto") # default

km3 = clm.KMeans(3, # no. clusters
 init = 'k-means++', # default
 algorithm="auto") # default

When we pass a list of clustering methods to encore.ces_convergence, the similarity values get saved in ces_conv2 in order.

[7]:

ces_conv2 = encore.ces_convergence(u, # universe
 10, # window size
 select='name CA',
 clustering_method=[km1, km2, km3]
)
ces_conv2.shape

[7]:

(9, 3)

As you can see, the number of clusters partitioned by KMeans has an effect on the resulting rate of convergence.

[8]:

labels = ['12 clusters', '6 clusters', '3 clusters']

ces_fig2, ces_ax2 = plt.subplots()
for data, label in zip(ces_conv2.T, labels):
 plt.plot(data, label=label)
ces_ax2.set_xlabel('Window')
ces_ax2.set_ylabel('Jensen-Shannon divergence')
plt.legend()

[8]:

<matplotlib.legend.Legend at 0x7f9eb2146160>

[image: ../../../_images/examples_analysis_trajectory_similarity_convergence_21_1.png]

Using default arguments with dimension reduction ensemble similarity

See dimension_reduction_ensemble_similarity.ipynb for an introduction on comparing trajectories via dimensionality reduction. We now use the dres_convergence function (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/encore/similarity.html#MDAnalysis.analysis.encore.similarity.dres_convergence]).

[9]:

dres_conv = encore.dres_convergence(u, # universe
 10, # window size
 select='name CA') # default

Much like ces_convergence, the output is an array of similarity values.

[10]:

dres_conv

[10]:

array([[0.52983036],
 [0.41177493],
 [0.31770319],
 [0.24269804],
 [0.18980852],
 [0.13913721],
 [0.06342056],
 [0.03125632],
 [0.]])

[11]:

dres_fig, dres_ax = plt.subplots()
plt.plot(dres_conv)
dres_ax.set_xlabel('Window')
dres_ax.set_ylabel('Jensen-Shannon divergence')

[11]:

Text(0, 0.5, 'Jensen-Shannon divergence')

[image: ../../../_images/examples_analysis_trajectory_similarity_convergence_27_1.png]

Comparing different dimensionality reduction methods

Again, you may want to compare the performance of different methods.

Principal component analysis uses singular value decomposition to project data onto a lower dimensional space. (See the scikit-learn user guide for more information.) [https://scikit-learn.org/stable/modules/decomposition.html#pca]

The method provided by MDAnalysis.encore accepts any of the keyword arguments of sklearn.decomposition.PCA [https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html] except n_components. Instead, use dimension to specify how many components to keep.

[12]:

pc1 = drm.PrincipalComponentAnalysis(dimension=1,
 svd_solver='auto')
pc2 = drm.PrincipalComponentAnalysis(dimension=2,
 svd_solver='auto')
pc3 = drm.PrincipalComponentAnalysis(dimension=3,
 svd_solver='auto')

[13]:

dres_conv2 = encore.dres_convergence(u, # universe
 10, # window size
 select='name CA',
 dimensionality_reduction_method=[pc1, pc2, pc3]
)
dres_conv2.shape

[13]:

(9, 3)

Again, the size of the subspace you choose to include in your similarity comparison, affects the apparent rate of convergence over the trajectory.

[14]:

labels = ['1D', '2D', '3D']

dres_fig2, dres_ax2 = plt.subplots()
for data, label in zip(dres_conv2.T, labels):
 plt.plot(data, label=label)
dres_ax2.set_xlabel('Window')
dres_ax2.set_ylabel('Jensen-Shannon divergence')
plt.legend()

[14]:

<matplotlib.legend.Legend at 0x7f9e98499ee0>

[image: ../../../_images/examples_analysis_trajectory_similarity_convergence_33_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. ENCORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415, October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415, doi:10.1371/journal.pcbi.1004415.

 Structure

Structure

	Elastic network analysis

	Average radial distribution functions

	Calculating the RDF atom-to-atom

	Protein dihedral angle analysis

	Helix analysis

 Elastic network analysis

Elastic network analysis

Here we use a Gaussian network model to characterise conformational states of a trajectory.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

Note

The elastic network analysis follows the approach of ([HKP+07]). Please cite them when using the MDAnalysis.analysis.gnm module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, DCD2
from MDAnalysis.analysis import gnm
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Using a Gaussian network model

Using a Gaussian network model to represent a molecule as an elastic network, we can characterise the concerted motions of a protein, and the dominance of these motions, over a trajectory. The analysis is applied to the atoms in the selection. If two atoms are within the cutoff distance (default: 7 ångström), they are considered to be bound by a spring. This analysis is reasonably robust to the choice of cutoff (between 5-9 Å), but the singular value decomposition may not converge with a
lower cutoff.

We use the GNMAnalysis class (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/gnm.html#MDAnalysis.analysis.gnm.GNMAnalysis]) for the analysis.

[3]:

nma1 = gnm.GNMAnalysis(u1,
 select='name CA',
 cutoff=7.0)
nma1.run()

[3]:

<MDAnalysis.analysis.gnm.GNMAnalysis at 0x7f05569e96d0>

The output is saved in nma1.results: the time in picoseconds, the first eigenvalue, and the first eigenvector, associated with each frame.

[4]:

list(nma1.results.keys())

[4]:

['eigenvalues', 'eigenvectors', 'times']

[5]:

(len(nma1.results['eigenvalues']), len(nma1.results['eigenvectors']),
 len(nma1.results['times']))

[5]:

(98, 98, 98)

[6]:

nma2 = gnm.GNMAnalysis(u2,
 select='name CA',
 cutoff=7.0)
nma2.run()

[6]:

<MDAnalysis.analysis.gnm.GNMAnalysis at 0x7f0556a1f8e0>

Unlike normal mode analysis, Gaussian network model analysis uses only a single eigenvalue to represent the rotation and translation of each frame. The motion with the lowest positive eigenvalue represents the dominant motion of a structure. The frequency of this motion is the square root of the eigenvalue.

Plotting the probability distribution of the frequency for the first eigenvector can highlight variation in the probability distribution, which can indicate trajectories in different states.

Below, we plot the distribution of eigenvalues. The dominant conformation state is represented by the peak at 0.06.

[7]:

histfig, histax = plt.subplots(nrows=2, sharex=True, sharey=True)
histax[0].hist(nma1.results['eigenvalues'])
histax[1].hist(nma2.results['eigenvalues'])

histax[1].set_xlabel('Eigenvalue')
histax[0].set_ylabel('Frequency')
histax[1].set_ylabel('Frequency')

[7]:

Text(0, 0.5, 'Frequency')

[image: ../../../_images/examples_analysis_structure_elastic_network_13_1.png]

When we plot how the eigenvalue varies with time, we can see that the simulation transitions into the dominant conformation and stays there in both trajectories.

[8]:

linefig, lineax = plt.subplots()
plt.plot(nma1.results['times'], nma1.results['eigenvalues'], label='DCD')
plt.plot(nma2.results['times'], nma2.results['eigenvalues'], label='DCD2')
lineax.set_xlabel('Time (ps)')
lineax.set_ylabel('Eigenvalue')
plt.legend()

[8]:

<matplotlib.legend.Legend at 0x7f05540e1ac0>

[image: ../../../_images/examples_analysis_structure_elastic_network_15_1.png]

DCD and DCD2 appear to be in similar conformation states.

Using a Gaussian network model with only close contacts

The MDAnalysis.analysis.gnm.closeContactGNMAnalysis class provides a version of the analysis where the Kirchhoff contact matrix is generated from close contacts between individual atoms in different residues, whereas the GNMAnalysis class generates it directly from all the atoms. In this close contacts class, you can weight the contact matrix by the number of atoms in the residues.

[9]:

nma_close = gnm.closeContactGNMAnalysis(u1,
 select='name CA',
 cutoff=7.0,
 weights='size')
nma_close.run()

[9]:

<MDAnalysis.analysis.gnm.closeContactGNMAnalysis at 0x7f0554052c40>

[10]:

plt.hist(nma_close.results['eigenvalues'])
plt.xlabel('Eigenvalue')
plt.ylabel('Frequency')

[10]:

Text(0, 0.5, 'Frequency')

[image: ../../../_images/examples_analysis_structure_elastic_network_20_1.png]

[11]:

ax = plt.plot(nma_close.results['times'], nma_close.results['eigenvalues'])
plt.xlabel('Time (ps)')
plt.ylabel('Eigenvalue')

[11]:

Text(0, 0.5, 'Eigenvalue')

[image: ../../../_images/examples_analysis_structure_elastic_network_21_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Benjamin A. Hall, Samantha L. Kaye, Andy Pang, Rafael Perera, and Philip C. Biggin. Characterization of Protein Conformational States by Normal-Mode Frequencies. Journal of the American Chemical Society, 129(37):11394–11401, September 2007. 00020. URL: https://doi.org/10.1021/ja071797y, doi:10.1021/ja071797y.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 Average radial distribution functions

Average radial distribution functions

Here we calculate the average radial cumulative distribution functions between two groups of atoms.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
from MDAnalysis.analysis import rdf
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. [3]

[2]:

u = mda.Universe(TPR, XTC)

Calculating the average radial distribution function for two groups of atoms

A radial distribution function \(g_{ab}(r)\) describes the time-averaged density of particles in \(b\) from the reference group \(a\) at distance \(r\). It is normalised so that it becomes 1 for large separations in a homogenous system.

\[g_{ab}(r) = (N_{a} N_{b})^{-1} \sum_{i=1}^{N_a} \sum_{j=1}^{N_b} \langle \delta(|\mathbf{r}_i - \mathbf{r}_j| - r) \rangle\]

The radial cumulative distribution function is

\[G_{ab}(r) = \int_0^r \!\!dr' 4\pi r'^2 g_{ab}(r')\]

The average number of \(b\) particles within radius \(r\) at density \(\rho\) is:

\[N_{ab}(r) = \rho G_{ab}(r)\]

The average number of particles can be used to compute coordination numbers, such as the number of neighbours in the first solvation shell.

Below, I calculate the average RDF between each atom of residue 60 to each atom of water to look at the distribution of water over the trajectory. The RDF is limited to a spherical shell around each atom in residue 60 by range. Note that the range is defined around each atom, rather than the center-of-mass of the entire group.

If you are after non-averaged radial distribution functions, have a look at the site-specific RDF class. The API docs for the InterRDF class are here. [https://docs.mdanalysis.org/stable/documentation_pages/analysis/rdf.html#MDAnalysis.analysis.rdf.InterRDF]

[3]:

res60 = u.select_atoms('resid 60')
water = u.select_atoms('resname SOL')

irdf = rdf.InterRDF(res60, water,
 nbins=75, # default
 range=(0.0, 15.0), # distance in angstroms
)
irdf.run()

[3]:

<MDAnalysis.analysis.rdf.InterRDF at 0x7f0442f64370>

The distance bins are available at irdf.bins and the radial distribution function is at irdf.rdf.

[4]:

irdf.results.bins

[4]:

array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1,
 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3,
 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5,
 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.3, 8.5, 8.7,
 8.9, 9.1, 9.3, 9.5, 9.7, 9.9, 10.1, 10.3, 10.5, 10.7, 10.9,
 11.1, 11.3, 11.5, 11.7, 11.9, 12.1, 12.3, 12.5, 12.7, 12.9, 13.1,
 13.3, 13.5, 13.7, 13.9, 14.1, 14.3, 14.5, 14.7, 14.9])

[15]:

plt.plot(irdf.results.bins, irdf.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[15]:

Text(0, 0.5, 'Radial distribution')

[image: ../../../_images/examples_analysis_structure_average_rdf_10_1.png]

The total number of atom pairs in each distance bin over the trajectory, before it gets normalised over the density, number of frames, and volume of each radial shell, is at irdf.count.

[6]:

irdf.results.count

[6]:

array([0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
 0.000e+00, 0.000e+00, 7.000e+00, 1.200e+01, 6.000e+00, 1.800e+01,
 5.200e+01, 1.010e+02, 1.540e+02, 1.700e+02, 1.920e+02, 2.300e+02,
 3.000e+02, 3.950e+02, 4.140e+02, 4.290e+02, 5.310e+02, 5.700e+02,
 6.190e+02, 6.780e+02, 7.020e+02, 7.910e+02, 8.560e+02, 9.320e+02,
 9.800e+02, 1.017e+03, 1.089e+03, 1.197e+03, 1.364e+03, 1.349e+03,
 1.483e+03, 1.556e+03, 1.713e+03, 1.783e+03, 1.781e+03, 1.950e+03,
 2.145e+03, 2.140e+03, 2.298e+03, 2.379e+03, 2.501e+03, 2.777e+03,
 2.868e+03, 2.900e+03, 3.024e+03, 3.186e+03, 3.244e+03, 3.382e+03,
 3.551e+03, 3.817e+03, 3.829e+03, 4.160e+03, 4.219e+03, 4.411e+03,
 4.557e+03, 4.824e+03, 4.943e+03, 4.980e+03, 5.237e+03, 5.507e+03,
 5.630e+03, 5.878e+03, 6.193e+03, 6.533e+03, 6.740e+03, 6.922e+03,
 7.276e+03, 7.293e+03, 7.616e+03])

Calculating the average radial distribution function for a group of atoms to itself

You may want to calculate the average RDF for a group of atoms where atoms overlap; for instance, looking at residue 60 around itself. In this case you should avoid including contributions from atoms interacting with themselves. The exclusion_block keyword allows you to mask pairs within the same chunk of atoms. Here you can pass exclusion_block=(1, 1) to create chunks of size 1 and avoid computing the RDF to itself.

[7]:

irdf2 = rdf.InterRDF(res60, res60,
 exclusion_block=(1, 1))
irdf2.run()

[7]:

<MDAnalysis.analysis.rdf.InterRDF at 0x7f044305ffa0>

[8]:

plt.plot(irdf2.results.bins, irdf2.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[8]:

Text(0, 0.5, 'Radial distribution')

[image: ../../../_images/examples_analysis_structure_average_rdf_16_1.png]

Similarly, you can apply this to residues.

[9]:

thr = u.select_atoms('resname THR')
print('There are {} THR residues'.format(len(thr.residues)))
print('THR has {} atoms'.format(len(thr.residues[0].atoms)))

There are 11 THR residues
THR has 14 atoms

The code below calculates the RDF only using contributions from pairs of atoms where the two atoms are not in the same threonine residue.

[10]:

irdf3 = rdf.InterRDF(thr, thr,
 exclusion_block=(14, 14))
irdf3.run()

[10]:

<MDAnalysis.analysis.rdf.InterRDF at 0x7f0443041df0>

[11]:

plt.plot(irdf3.results.bins, irdf3.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[11]:

Text(0, 0.5, 'Radial distribution')

[image: ../../../_images/examples_analysis_structure_average_rdf_21_1.png]

If you are splitting a residue over your two selections, you can discount pairs from the same residue by choosing appropriately sized exclusion blocks.

[12]:

first = thr.residues[0]
print('THR has these atoms: ', ', '.join(first.atoms.names))
thr_c1 = first.atoms.select_atoms('name C*')
print('THR has {} carbons'.format(len(thr_c1)))
thr_other1 = first.atoms.select_atoms('not name C*')
print('THR has {} non carbons'.format(len(thr_other1)))

THR has these atoms: N, H, CA, HA, CB, HB, OG1, HG1, CG2, HG21, HG22, HG23, C, O
THR has 4 carbons
THR has 10 non carbons

The exclusion_block here ensures that the RDF is only computed from threonine carbons to atoms in different threonine residues.

[13]:

thr_c = thr.select_atoms('name C*')
thr_other = thr.select_atoms('not name C*')

irdf4 = rdf.InterRDF(thr_c, thr_other,
 exclusion_block=(4, 10))
irdf4.run()

[13]:

<MDAnalysis.analysis.rdf.InterRDF at 0x7f0442bc0af0>

[14]:

plt.plot(irdf4.results.bins, irdf4.results.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[14]:

Text(0, 0.5, 'Radial distribution')

[image: ../../../_images/examples_analysis_structure_average_rdf_26_1.png]

References

[1] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[2] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 Calculating the RDF atom-to-atom

Calculating the RDF atom-to-atom

We calculate the site-specific radial distribution functions of solvent around certain atoms.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
from MDAnalysis.analysis import rdf
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u = mda.Universe(TPR, XTC)

Calculating the site-specific radial distribution function

A radial distribution function \(g_{ab}(r)\) describes the time-averaged density of particles in \(b\) from the reference group \(a\) at distance \(r\). It is normalised so that it becomes 1 for large separations in a homogenous system. See the tutorial on averaged RDFs for more information. The InterRDF_s class (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/rdf.html#MDAnalysis.analysis.rdf.InterRDF_s]) allows you to
compute RDFs on an atom-to-atom basis, rather than simply giving the averaged RDF as in InterRDF.

Below, I calculate the RDF between selected alpha-carbons and the water atoms within 15 angstroms of CA60, in the first frame of the trajectory. The water group does not update over the trajectory as the water moves towards and away from the alpha-carbon.

The RDF is limited to a spherical shell around each atom by range. Note that the range is defined around each atom, rather than the center-of-mass of the entire group.

If density=True, the final RDF is over the average density of the selected atoms in the trajectory box, making it comparable to the output of rdf.InterRDF. If density=False, the density is not taken into account. This can make it difficult to compare RDFs between AtomGroups that contain different numbers of atoms.

[3]:

ca60 = u.select_atoms('resid 61 and name CA')
ca61 = u.select_atoms('resid 62 and name CA')
ca62 = u.select_atoms('resid 63 and name CA')
water = u.select_atoms('resname SOL and sphzone 15 group sel_a', sel_a=ca60)

ags = [[ca60+ca61, water], [ca62, water]]

ss_rdf = rdf.InterRDF_s(u, ags,
 nbins=75, # default
 range=(0.0, 15.0), # distance
 norm='density',
)
ss_rdf.run()

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/analysis/rdf.py:531: DeprecationWarning: The `u` attribute is superflous and will be removed in MDAnalysis 3.0.0.
 warnings.warn("The `u` attribute is superflous and will be removed "

[3]:

<MDAnalysis.analysis.rdf.InterRDF_s at 0x7faa885ab280>

Like rdf.InterRDF, the distance bins are available at ss_rdf.bins.

[4]:

ss_rdf.results.bins

[4]:

array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1,
 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3,
 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5,
 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.3, 8.5, 8.7,
 8.9, 9.1, 9.3, 9.5, 9.7, 9.9, 10.1, 10.3, 10.5, 10.7, 10.9,
 11.1, 11.3, 11.5, 11.7, 11.9, 12.1, 12.3, 12.5, 12.7, 12.9, 13.1,
 13.3, 13.5, 13.7, 13.9, 14.1, 14.3, 14.5, 14.7, 14.9])

ss_rdf.rdf contains the atom-pairwise RDF for each of your pairs of AtomGroups. It is a list with the same length as your list of pairs ags. A result array has the shape (len(ag1), len(ag2), nbins) for the AtomGroup pair (ag1, ag2).

[5]:

print('There are {} water atoms'.format(len(water)))
print('The first result array has shape: {}'.format(ss_rdf.results.rdf[0].shape))
print('The second result array has shape: {}'.format(ss_rdf.results.rdf[1].shape))

There are 1041 water atoms
The first result array has shape: (2, 1041, 75)
The second result array has shape: (1, 1041, 75)

Index the results array to get the RDF for a particular pair of atoms. ss_rdf.rdf[i][j][k] will return the RDF between atoms \(j\) and \(k\) in the \(i\)-th pair of atom groups. For example, below we get the RDF between the alpha-carbon in residue 61 (i.e. the second atom of the first atom group) and the 571st atom of water.

[6]:

ca61_h2o_571 = ss_rdf.results.rdf[0][1][570]
ca61_h2o_571

[6]:

array([0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0. , 0. ,
 0.0023665 , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0. , 0.00114292,
 0.00106921, 0. , 0.00094167, 0. , 0. ,
 0. , 0.0007466 , 0. , 0. , 0. ,
 0. , 0. , 0.00055068, 0. , 0. ,
 0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0. , 0. ,
 0. , 0.0003116 , 0. , 0. , 0. ,
 0. , 0. , 0.00025464, 0.00024669, 0. ,
 0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0. , 0.])

[7]:

plt.plot(ss_rdf.results.bins, ca61_h2o_571)
w570 = water[570]
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')
plt.title('RDF between CA61 and {}{}'.format(w570.name, w570.resid))

[7]:

Text(0.5, 1.0, 'RDF between CA61 and MW6365')

[image: ../../../_images/examples_analysis_structure_site_specific_rdf_14_1.png]

If you are having trouble finding pairs of atoms where the results are not simply 0, you can use Numpy functions to find the indices of the nonzero values. Below we count the nonzero entries in the first rdf array.

[8]:

j, k, nbin = np.nonzero(ss_rdf.results.rdf[0])
print(len(j), len(k), len(nbin))

4374 4374 4374

Each triplet of [j, k, nbin] indices is a nonzero value, corresponding to the nbinth bin between atoms \(j\) and \(k\). For example:

[9]:

print(f"{ss_rdf.results.rdf[0][j[0], k[0], nbin[0]]: .5f}")

 0.00028

Right now, we don’t care which particular bin has a nonzero value. Let’s find which water atom is the most present around the alpha-carbon of residue 60, i.e. the first atom.

[10]:

where j == 0, representing the first atom
water_for_ca60 = k[j==0]
count how many of each atom index are in array
k_values, k_counts = np.unique(water_for_ca60,
 return_counts=True)
get the first k value with the most counts
k_max = k_values[np.argmax(k_counts)]
print('The water atom with the highest distribution '
 'around CA60 has index {}'.format(k_max))

The water atom with the highest distribution around CA60 has index 568

You can also calculate a cumulative distribution function for each of your results with ss_rdf.get_cdf(). This is the actual count of atoms within the given range, averaged over the trajectory; the volume of each radial shell is not taken into account. The result then gets saved into ss_rdf.cdf. The CDF has the same shape as the corresponding RDF array.

[11]:

cdf = ss_rdf.get_cdf()
print(cdf[0].shape)

(2, 1041, 75)

[12]:

plt.plot(ss_rdf.results.bins, ss_rdf.results.cdf[0][0][568])
w568 = water[568]
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial cumulative distribution')
plt.title('RDF between CA60 and {}{}'.format(w568.name, w568.resid))

[12]:

Text(0.5, 1.0, 'RDF between CA60 and HW16365')

[image: ../../../_images/examples_analysis_structure_site_specific_rdf_23_1.png]

The site-specific RDF without densities

When the density of the selected atom groups over the box volume is not accounted for, your distribution values will be proportionally lower.

[13]:

ss_rdf_nodensity = rdf.InterRDF_s(u, ags,
 nbins=75, # default
 range=(0.0, 15.0), # distance
 density=False,
)
ss_rdf_nodensity.run()
ss_rdf_nodensity.get_cdf()

[13]:

[array([[[0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 ...,
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1]],

 [[0. , 0. , 0. , ..., 0. , 0.1, 0.1],
 [0. , 0. , 0. , ..., 0. , 0. , 0.],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 ...,
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1]]]),
 array([[[0. , 0. , 0. , ..., 0. , 0.1, 0.1],
 [0. , 0. , 0. , ..., 0. , 0. , 0.],
 [0. , 0. , 0. , ..., 0.1, 0.1, 0.1],
 ...,
 [0. , 0. , 0. , ..., 0. , 0. , 0.1],
 [0. , 0. , 0. , ..., 0. , 0. , 0.],
 [0. , 0. , 0. , ..., 0. , 0. , 0.]]])]

[14]:

plt.plot(ss_rdf_nodensity.results.bins,
 ss_rdf_nodensity.results.rdf[0][1][570])
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')
plt.title('RDF between CA61 and {}{}'.format(w570.name, w570.resid))

[14]:

Text(0.5, 1.0, 'RDF between CA61 and MW6365')

[image: ../../../_images/examples_analysis_structure_site_specific_rdf_27_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 Protein dihedral angle analysis

Protein dihedral angle analysis

We look at backbone dihedral angles and generate Ramachandran and Janin plots.

The methods and examples shown here are only applicable to Universes where protein residue names have standard names, i.e. the backbone is comprised of –N–CA–C–N–CA– atoms.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.19.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import GRO, XTC
from MDAnalysis.analysis import dihedrals
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u = mda.Universe(GRO, XTC)
protein = u.select_atoms('protein')
print('There are {} residues in the protein'.format(len(protein.residues)))

There are 214 residues in the protein

Selecting dihedral atom groups

Proteins have canonical dihedral angles defined on the backbone atoms. \(\phi\) (phi), \(\psi\) (psi) and \(\omega\) (omega) are backbone angles. The side-chain dihedral angles are called \(\chi_n\) (chi-\(n\)), and can vary in number.

[image: dihedral angles in proteins]

MDAnalysis allows you to directly select the atoms involved in the \(\phi\), \(\psi\), \(\omega\), and \(\chi_1\) angles, provided that your protein atoms have standard names. If MDAnalysis cannot find atoms matching the names that it expects, it will return None. You can see below that phi_selection() returns an ordered AtomGroup of the atoms in the \(\phi\) angle of a residue if they can be found, and None if not.

[3]:

for res in u.residues[210:220]:
 phi = res.phi_selection()
 if phi is None:
 names = None
 else:
 names = phi.names
 print('{}: {} '.format(res.resname, names))

LYS: ['C' 'N' 'CA' 'C']
ILE: ['C' 'N' 'CA' 'C']
LEU: ['C' 'N' 'CA' 'C']
GLY: ['C' 'N' 'CA' 'C']
SOL: None
SOL: None
SOL: None
SOL: None
SOL: None
SOL: None

Similar functions exist for the other angles:

	\(\psi\) angle (Residue.psi_selection)

	\(\omega\) angle (Residue.omega_selection)

	\(\chi_1\) angle (Residue.chi1_selection)

Calculating dihedral angles

Dihedral angles can be calculated directly from the AtomGroup, by converting it to a Dihedral object.

[4]:

omegas = [res.omega_selection() for res in protein.residues[5:10]]
omegas[0].dihedral.value()

[4]:

-169.78220560918737

The analysis.dihedrals.Dihedral class (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/dihedrals.html#MDAnalysis.analysis.dihedrals.Dihedral]) can be used to rapidly calculate dihedrals for AtomGroups over the entire trajectory.

[5]:

dihs = dihedrals.Dihedral(omegas).run()

The angles are saved in dihs.angles, in an array with the shape (n_frames, n_atomgroups).

[6]:

dihs.results.angles.shape

[6]:

(10, 5)

Plotting

[7]:

labels = ['Res {}'.format(n) for n in np.arange(5, 10)]
for ang, label in zip(dihs.results.angles.T, labels):
 plt.plot(ang, label=label)
plt.xlabel('Frame')
plt.ylabel('Angle (degrees)')
plt.legend()

[7]:

<matplotlib.legend.Legend at 0x7fcd2ba11580>

[image: ../../../_images/examples_analysis_structure_dihedrals_15_1.png]

[8]:

fig_polar = plt.figure()
ax_polar = fig_polar.add_subplot(111, projection='polar')
frames = np.arange(10)
for res, label in zip(dihs.results.angles.T, labels):
 c = ax_polar.plot(res, frames, label=label)
plt.legend()

[8]:

<matplotlib.legend.Legend at 0x7fcd2b8cb430>

[image: ../../../_images/examples_analysis_structure_dihedrals_16_1.png]

Ramachandran analysis

The Ramachandran class (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/dihedrals.html#MDAnalysis.analysis.dihedrals.Ramachandran]) calculates the \(\phi\) and \(\psi\) angles of the selected residues over the course of the trajectory, again saving it into .angles. If residues are given that do not contain a \(\phi\) and \(\psi\) angle, they are omitted from the results. For example, the angles returned are from every residue in the protein
except the first and last, for which a \(\phi\) angle and a \(\psi\) angle do not exist, respectively.

The returned angles are in the shape (n_frames, n_residues, 2) where the last dimension holds the \(\phi\) and \(\psi\) angle.

[9]:

rama = dihedrals.Ramachandran(protein).run()
print(rama.results.angles.shape)

(10, 212, 2)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/analysis/dihedrals.py:407: UserWarning: Cannot determine phi and psi angles for the first or last residues
 warnings.warn("Cannot determine phi and psi angles for the first "

You can plot this yourself, but Ramachandran.plot() is a convenience method that plots the data from each time step onto a standard Ramachandran plot. You can call it with no arguments; any keyword arguments that you give (except ax and ref) will be passed to matplotlib.axes.Axes.scatter to modify your plot.

[10]:

rama.plot(color='black', marker='.')

[10]:

<AxesSubplot: xlabel='$\\phi$', ylabel='$\\psi$'>

[image: ../../../_images/examples_analysis_structure_dihedrals_20_1.png]

If you set ref=True, your data will be plotted with areas that show the allowed (dark blue) and marginally allowed (lighter blue) regions.

Note

These regions are computed from a reference set of 500 PDB files from ([LDA+03]). The allowed region includes 90% data points, while the marginally allowed region includes 99% data points.

[11]:

rama.plot(color='black', marker='.', ref=True)

[11]:

<AxesSubplot: xlabel='$\\phi$', ylabel='$\\psi$'>

[image: ../../../_images/examples_analysis_structure_dihedrals_22_1.png]

Janin analysis

The Janin class (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/dihedrals.html#MDAnalysis.analysis.dihedrals.Janin]) works similarly to the Ramachandran analysis, but looks at the \(\chi_1\) and \(\chi_2\) angles instead. It therefore ignores all residues without a long enough side-chain, such as alanine, cysteine, and so on.

Again, the returned angles are in the shape (n_frames, n_residues, 2) where the last dimension holds the \(\chi_1\) and \(\chi_2\) angle. We can see that only about half of the residues in AdK have side-chains long enough for this analysis.

[12]:

janin = dihedrals.Janin(protein).run()
print(janin.results.angles.shape)

(10, 129, 2)

/home/pbarletta/mambaforge/envs/guide/lib/python3.9/site-packages/MDAnalysis/analysis/dihedrals.py:589: UserWarning: All residues selected with 'resname ALA CYS* GLY PRO SER THR VAL' have been removed from the selection.
 warnings.warn(f"All residues selected with '{select_remove}' "

The Janin class also contains a plot() method.

Note

The reference regions here are also computed from the reference set of 500 PDB files from ([LDA+03]) (the allowed region includes 90% data points, while the marginally allowed region includes 98% data points). Information about general Janin regions is from ([JWLM78]).

[13]:

janin.plot(ref=True, marker='.', color='black')

[13]:

<AxesSubplot: xlabel='$\\chi_1$', ylabel='$\\chi_2$'>

[image: ../../../_images/examples_analysis_structure_dihedrals_26_1.png]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Joël Janin, Shoshanna Wodak, Michael Levitt, and Bernard Maigret. Conformation of amino acid side-chains in proteins. Journal of Molecular Biology, 125(3):357 – 386, 1978. 00874. URL: http://www.sciencedirect.com/science/article/pii/0022283678904084, doi:10.1016/0022-2836(78)90408-4.

[4] Simon C. Lovell, Ian W. Davis, W. Bryan Arendall, Paul I. W. de Bakker, J. Michael Word, Michael G. Prisant, Jane S. Richardson, and David C. Richardson. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3):437–450, January 2003. 03997. URL: http://doi.wiley.com/10.1002/prot.10286, doi:10.1002/prot.10286.

[5] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 Helix analysis

Helix analysis

We look at protein helices with HELANAL.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 2.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	matplotlib [https://matplotlib.org]

	nglview [http://nglviewer.org/nglview/latest/]

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

Note

MDAnalysis.analysis.helix_analysis.HELANAL implements the HELANAL algorithm from [BKV00], which itself uses the method of [SM67] to characterise each local axis. Please cite them when using this module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import helix_analysis as hel
import matplotlib.pyplot as plt
import nglview as nv
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

[2]:

u = mda.Universe(PSF, DCD)

/Users/lily/pydev/mdanalysis/package/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Helix analysis

HELANAL can be used to characterize the geometry of helices with at least 9 residues. The geometry of an alpha helix is characterized by computing local helix axes and local helix origins for four contiguous C-alpha atoms, using the procedure of Sugeta and Miyazawa ([SM67]) and sliding this window over the length of the helix in steps of one C-alpha atom.

HELANAL computes a number of properties.

[image: local properties]

For each sliding window, it calculates:

	local_rotation_vectors: the vectors bisecting the angles of the middle 2 atoms

	local_origins: the projected origins of the helix

	local_twists: the twist of each window (\(\theta\))

	residues_per_turn: how many residues would fit in a turn, based on local_twist

	local_axes: the axis of each local helix

	local_heights: the rise of each helix

HELANAL calculates the bends between each local_axes and fits the vector global_axes to the local_origins.

[image: local axes]

all_bends contains the angles between every local_axes (\(\alpha\)) in a pairwise matrix, whereas local_bends contains the angles between local_axes that are calculated 3 windows apart (\(\beta\)). The global_tilts (\(\gamma\)) are calculated as the angle between the global_axes and the user-given reference ref_axis.

[image: screw angles]

Finally, local_screw angles are computed between the local_rotation_vectors and the normal plane of the global_axes.

Running the analysis

As with most other analysis classes in MDAnalysis, pass in the universe and selection that you would to like to operate on. The default reference axis is the z-axis. You can also pass in a list of selection strings to run HELANAL on multiple helices at once.

[3]:

h = hel.HELANAL(u, select='name CA and resnum 161-187',
 ref_axis=[0, 0, 1]).run()

The properties described above are stored as attributes in h.results. For example, the all_bends matrix contains the bends in a (n_frames, n_residues-3, n_residues-3) array.

[4]:

h.results.all_bends.shape

[4]:

(98, 24, 24)

Each property is also summarised with a mean value, the sample standard deviation, and the average deviation from the mean.

[5]:

h.results.summary.keys()

[5]:

dict_keys(['local_twists', 'local_bends', 'local_heights', 'local_nres_per_turn', 'local_origins', 'local_axes', 'local_helix_directions', 'local_screw_angles', 'global_axis', 'global_tilts', 'all_bends'])

[6]:

for key, val in h.results.summary['global_tilts'].items():
 print(f"{key}: {val:.3f}")

mean: 86.121
sample_sd: 2.011
abs_dev: 1.715

As the data is stored as arrays, it can easily be plotted.

[7]:

plt.plot(h.results.local_twists.mean(axis=1))
plt.xlabel('Frame')
plt.ylabel('Average twist (degrees)')
plt.show()

[image: ../../../_images/examples_analysis_structure_helanal_13_0.png]

You can also create a Universe from the local_origins if you would like to save it as a file and visualise it in programs such as VMD.

[8]:

origins = h.universe_from_origins()

[9]:

view = nv.show_mdanalysis(h.atomgroups[0])
view.add_trajectory(origins)
view

Below we use NGLView to create a representative GIF.

[10]:

from nglview.contrib.movie import MovieMaker
movie = MovieMaker(
view,
step=4, # keep every 4th step
render_params={"factor": 3}, # controls quality
output='helanal_images/helanal-view.gif',
)
movie.make()

[image: helanal gif]

References

[1] M. Bansal, S. Kumar, and R. Velavan. HELANAL: a program to characterize helix geometry in proteins. Journal of Biomolecular Structure & Dynamics, 17(5):811–819, April 2000. 00175. doi:10.1080/07391102.2000.10506570.

[2] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[3] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

 Dimension reduction

Dimension reduction

A molecular dynamics trajectory with \(N\) atoms can be considered
a path through \(3N\)-dimensional molecular configuration space.
It remains difficult to extract important dynamics or compare trajectory
similarity from such a high-dimensional space. However, collective motions
and physically relevant states can often be effectively described with
low-dimensional representations of the conformational space explored over
the trajectory. MDAnalysis implements two methods for dimensionality
reduction.

Principal component analysis is a common linear dimensionality reduction technique that maps the coordinates in each frame of your trajectory to a linear combination of orthogonal vectors. The vectors are called principal components, and they are ordered such that the first principal component accounts for the most variance in the original data (i.e. the largest uncorrelated motion in your trajectory), and each successive component accounts for less and less variance. Trajectory coordinates can be transformed onto a lower-dimensional space (essential subspace) constructed from these principal components in order to compare conformations. Your trajectory can also be projected onto each principal component in order to visualise the motion described by that component.

Diffusion maps are a non-linear dimensionality reduction technique that embeds the coordinates of each frame onto a lower-dimensional space, such that the distance between each frame in the lower-dimensional space represents their “diffusion distance”, or similarity. It integrates local information about the similarity of each point to its neighours, into a global geometry of the intrinsic manifold. This means that this technique is not suitable for trajectories where the transitions between conformational states is not well-sampled (e.g. replica exchange simulations), as the regions may become disconnected and a meaningful global geometry cannot be approximated. Unlike PCA, there is no explicit mapping between the components of the lower-dimensional space and the original atomic coordinates; no physical interpretation of the eigenvectors is immediately available.

For computing similarity, see the tutorials in Trajectory similarity.

	Principal component analysis of a trajectory

	Non-linear dimension reduction to diffusion maps

 Principal component analysis of a trajectory

Principal component analysis of a trajectory

Here we compute the principal component analysis of a trajectory.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 1.0.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	nglview [http://nglviewer.org/nglview/latest/api.html]

Throughout this tutorial we will include cells for visualising Universes with the NGLView [http://nglviewer.org/nglview/latest/api.html] library. However, these will be commented out, and we will show the expected images generated instead of the interactive widgets.

[1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import pca, align
import nglview as nv

import warnings
suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]:

u = mda.Universe(PSF, DCD)

Principal component analysis

Principal component analysis is a common linear dimensionality reduction technique that maps the coordinates in each frame of your trajectory to a linear combination of orthogonal vectors. The vectors are called principal components, and they are ordered such that the first principal component accounts for the most variance in the original data (i.e. the largest uncorrelated motion in your trajectory), and each successive component accounts for less and less variance. The frame-by-frame
conformational fluctuation can be considered a linear combination of the essential dynamics yielded by the PCA. Please see [ALB93], [Jol02], [SJS14], or [SS18] for a more in-depth introduction to PCA.

Trajectory coordinates can be transformed onto a lower-dimensional space (essential subspace) constructed from these principal components in order to compare conformations. You can thereby visualise the motion described by that component.

In MDAnalysis, the method implemented in the PCA class (API docs [https://docs.mdanalysis.org/stable/documentation_pages/analysis/pca.html]) is as follows:

	Optionally align each frame in your trajectory to the first frame.

	Construct a 3N x 3N covariance for the N atoms in your trajectory. Optionally, you can provide a mean; otherwise the covariance is to the averaged structure over the trajectory.

	Diagonalise the covariance matrix. The eigenvectors are the principal components, and their eigenvalues are the associated variance.

	Sort the eigenvalues so that the principal components are ordered by variance.

Note

Principal component analysis algorithms are deterministic, but the solutions are not unique. For example, you could easily change the sign of an eigenvector without altering the PCA. Different algorithms are likely to produce different answers, due to variations in implementation. MDAnalysis may not return the same values as another package.

[3]:

aligner = align.AlignTraj(u, u, select='backbone',
 in_memory=True).run()

You can choose how many principal components to save from the analysis with n_components. The default value is None, which saves all of them. You can also pass a mean reference structure to be used in calculating the covariance matrix. With the default value of None, the covariance uses the mean coordinates of the trajectory.

[4]:

pc = pca.PCA(u, select='backbone',
 align=True, mean=None,
 n_components=None).run()

The principal components are saved in pc.p_components. If you kept all the components, you should have an array of shape \((n_{atoms}\times3, n_{atoms}\times3)\).

[5]:

backbone = u.select_atoms('backbone')
n_bb = len(backbone)
print('There are {} backbone atoms in the analysis'.format(n_bb))
print(pc.p_components.shape)

There are 855 backbone atoms in the analysis
(2565, 2565)

The variance of each principal component is in pc.variance. For example, to get the variance explained by the first principal component to 5 decimal places:

[6]:

print(f"PC1: {pc.variance[0]:.5f}")

PC1: 4203.19053

This variance is somewhat meaningless by itself. It is much more intuitive to consider the variance of a principal component as a percentage of the total variance in the data. MDAnalysis also tracks the percentage cumulative variance in pc.cumulated_variance. As shown below, the first principal component contains 90.3% the total trajectory variance. The first three components combined account for 96.4% of the total variance.

[7]:

for i in range(3):
 print(f"Cumulated variance: {pc.cumulated_variance[i]:.3f}")

Cumulated variance: 0.903
Cumulated variance: 0.951
Cumulated variance: 0.964

[8]:

plt.plot(pc.cumulated_variance[:10])
plt.xlabel('Principal component')
plt.ylabel('Cumulative variance')
plt.show()

[image: ../../../_images/examples_analysis_reduced_dimensions_pca_15_0.png]

Visualising projections into a reduced dimensional space

The pc.transform() method transforms a given atom group into weights \(\mathbf{w}_i\) over each principal component \(i\).

\[\mathbf{w}_i(t) = (\mathbf{r}(t)-\mathbf{\overline{r}}) \cdot \mathbf{u}_i\]

\(\mathbf{r}(t)\) are the atom group coordinates at time \(t\), \(\mathbf{\overline{r}}\) are the mean coordinates used in the PCA, and \(\mathbf{u}_i\) is the \(i\)th principal component eigenvector \(\mathbf{u}\).

While the given atom group must have the same number of atoms that the principal components were calculated over, it does not have to be the same group.

Again, passing n_components=None will tranform your atom group over every component. Below, we limit the output to projections over 3 principal components only.

[9]:

transformed = pc.transform(backbone, n_components=3)
transformed.shape

[9]:

(98, 3)

The output has the shape (n_frames, n_components). For easier analysis and plotting we can turn the array into a DataFrame.

[10]:

df = pd.DataFrame(transformed,
 columns=['PC{}'.format(i+1) for i in range(3)])
df['Time (ps)'] = df.index * u.trajectory.dt
df.head()

[10]:

 Non-linear dimension reduction to diffusion maps

Non-linear dimension reduction to diffusion maps

Here we reduce the dimensions of a trajectory into a diffusion map.

Last updated: December 2022 with MDAnalysis 2.4.0-dev0

Minimum version of MDAnalysis: 0.17.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Note

Please cite [CL06] if you use the MDAnalysis.analysis.diffusionmap.DiffusionMap in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import diffusionmap
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme ([BDPW09]). The trajectory DCD samples a transition from a closed to an open conformation.

[2]:

u = mda.Universe(PSF, DCD)

/home/pbarletta/mambaforge/envs/mda-user-guide/lib/python3.9/site-packages/MDAnalysis/coordinates/DCD.py:165: DeprecationWarning: DCDReader currently makes independent timesteps by copying self.ts while other readers update self.ts inplace. This behavior will be changed in 3.0 to be the same as other readers. Read more at https://github.com/MDAnalysis/mdanalysis/issues/3889 to learn if this change in behavior might affect you.
 warnings.warn("DCDReader currently makes independent timesteps"

Diffusion maps

Diffusion maps are a non-linear dimensionality reduction technique that embeds the coordinates of each frame onto a lower-dimensional space, such that the distance between each frame in the lower-dimensional space represents their “diffusion distance”, or similarity. It integrates local information about the similarity of each point to its neighours, into a global geometry of the intrinsic manifold. This means that this technique is not suitable for trajectories where the transitions between
conformational states are not well-sampled (e.g. replica exchange simulations), as the regions may become disconnected and a meaningful global geometry cannot be approximated. Unlike principal component analysis, there is no explicit mapping between the components of the lower-dimensional space and the original atomic coordinates; no physical interpretation of the eigenvectors is immediately available. Please see [CL06],
[dlPHHvdW08], [RZMC11] and [FPKD11] for more information.

The default distance metric implemented in MDAnalysis’ DiffusionMap class is RMSD.

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite [The05] if you use the default distance metric in published work.

[3]:

dmap = diffusionmap.DiffusionMap(u, select='backbone', epsilon=2)
dmap.run()

[3]:

<MDAnalysis.analysis.diffusionmap.DiffusionMap at 0x7f75f1291520>

The first eigenvector in a diffusion map is always essentially all ones (when divided by a constant):

[4]:

dmap._eigenvectors[:, 0]

[4]:

array([0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525, 0.10101525, 0.10101525,
 0.10101525, 0.10101525, 0.10101525])

Therefore, when we embed the trajectory onto the dominant eigenvectors, we ignore the first eigenvector. In order to determine which vectors are dominant, we can examine the eigenvalues for a spectral gap: where the eigenvalues stop decreasing constantly in value.

[5]:

fig, ax = plt.subplots()
ax.plot(dmap.eigenvalues[1:16])

[5]:

[<matplotlib.lines.Line2D at 0x7f75f1291970>]

[image: ../../../_images/examples_analysis_reduced_dimensions_diffusion_map_9_1.png]

From this plot, we take the first k dominant eigenvectors to be the first five. Below, we transform the trajectory onto these eigenvectors. The time argument is the exponent that the eigenvalues are raised to for embedding. As values increase fo